ترغب بنشر مسار تعليمي؟ اضغط هنا

A NICER look at the Aql X-1 hard state

66   0   0.0 ( 0 )
 نشر من قبل Peter Bult
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a spectral-timing analysis of the neutron star low-mass X-ray binary Aql~X-1 with the Neutron Star Interior Composition Explorer (NICER) on the International Space Station. Aql~X-1 was observed with NICER during a dim outburst in 2017 July, collecting approximately $50$ ks of good exposure. The spectral and timing properties of the source correspond to that of an (hard) extreme island state in the atoll classification. We find that the fractional amplitude of the low frequency ($<0.3$ Hz) band-limited noise shows a dramatic turnover as a function of energy: it peaks at 0.5 keV with nearly 5% rms, drops to $12%$ rms at 2 keV, and rises to $15%$ rms at 10 keV. Through the analysis of covariance spectra, we demonstrate that band-limited noise exists in both the soft thermal emission and the power-law emission. Additionally, we measure hard time lags, indicating the thermal emission at $0.5$ keV leads the power-law emission at 10 keV on a timescale of $sim100$ ms at $0.3$ Hz to $sim10$ ms at $3$ Hz. Our results demonstrate that the thermal emission in the hard state is intrinsically variable, and driving the modulation of the higher energy power-law. Interpreting the thermal spectrum as disk emission, we find our results are consistent with the disk propagation model proposed for accretion onto black holes.



قيم البحث

اقرأ أيضاً

We report the discovery of an anti-correlation between the soft and the hard X-ray lightcurves of the X-ray binary Aql X-1 when bursting. This behavior may indicate that the corona is cooled by the soft X-ray shower fed by the type-I X-ray bursts, an d that this process happens within a few seconds. Stacking the Aql X-1 lightcurves of type-I bursts, we find a shortage in the 40--50 keV band, delayed by 4.5$pm$1.4 s with respect to the soft X-rays. The photospheric radius expansion (PRE) bursts are different in that neither a shortage nor an excess shows up in the hard X-ray lightcurve.
96 - J. M. Miller 2019
We present an analysis of the time-averaged spectrum of the Seyfert-2 active galaxy NGC 4388, obtained by NICER. The intrinsic strength of the reflection spectrum in NGC 4388, the large collecting area and favorable pass band of NICER, and a net expo sure of 105.6 ks yielded an exceptionally sensitive spectrum. Using two independent families of models, the intrinsic spectrum from the central engine is found to be highly obscured but not Compton-thick. Enforcing physical self-consistency within each model, the independent treatments give formally consistent results: N_H = 2.67 (-0.03,+0.02) E+23 cm^-2 or N_H = 2.64 (-0.03, +0.03) E+23 cm^-2. Past measurements made with Suzaku and XMM-Newton are in broad agreement with these column density values. A more recent measurement with NuSTAR (in late 2013) recorded a column density about twice as large; the robustness of this variability is reinforced by the use of consistent models and procedures. The neutral Fe K-alpha line in the NICER spectrum is nominally resolved and consistent with an origin in the optical broad line region (BLR). The data also require ionized absorption in the Fe K band, similar to the warm absorbers detected in Seyfert-1 active galactic nuclei (AGN). The low-energy spectrum is consistent with a set of ionized plasma components. We discuss these findings and note that the geometric inferences that derive from this analysis can be tested with XRISM and Athena.
The black hole candidate and X-ray binary MAXI J1535-571 was discovered in September 2017. During the decay of its discovery outburst, and before returning to quiescence, the source underwent at least four reflaring events, with peak luminosities of $sim$10$^{35-36}$ erg s$^{-1}$ (d/4.1 kpc)$^2$. To investigate the nature of these flares, we analysed a sample of NICER observations taken with almost daily cadence. In this work we present the detailed spectral and timing analysis of the evolution of the four reflares. The higher sensitivity of NICER at lower energies, in comparison with other X-ray detectors, allowed us to constrain the disc component of the spectrum at $sim$0.5 keV. We found that during each reflare the source appears to trace out a q-shaped track in the hardness-intensity diagram similar to those observed in black hole binaries during full outbursts. MAXI J1535-571 transits between the hard state (valleys) and softer states (peaks) during these flares. Moreover, the Comptonised component is undetected at the peak of the first reflare, while the disc component is undetected during the valleys. Assuming the most likely distance of 4.1 kpc, we find that the hard-to-soft transitions take place at the lowest luminosities ever observed in a black hole transient, while the soft-to-hard transitions occur at some of the lowest luminosities ever reported for such systems.
A number of studies have revealed variability from neutron star low-mass X-ray binaries during quiescence. Such variability is not well characterised, or understood, but may be a common property that has been missed due to lack of multiple observatio ns. One such source where variability has been observed is Aql X-1. Here, we analyse 14 Chandra and XMM-Newton observations of Aql X-1 in quiescence, covering a period of approximately 2 years. There is clear variability between the epochs, with the most striking feature being a flare-like increase in the flux by a factor of 5. Spectral fitting is inconclusive as to whether the power-law and/or thermal component is variable. We suggest that the variability and flare-like behaviour during quiescence is due to accretion at low rates which might reach the neutron star surface.
We present a broadband X-ray spectral analysis of the M51 system, including the dual active galactic nuclei (AGN) and several off-nuclear point sources. Using a deep observation by NuSTAR, new high-resolution coverage of M51b by Chandra, and the late st X-ray torus models, we measure the intrinsic X-ray luminosities of the AGN in these galaxies. The AGN of M51a is found to be Compton thick, and both AGN have very low accretion rates ($lambda_{rm Edd} <10^{-4}$). The latter is surprising considering that the galaxies of M51 are in the process of merging, which is generally predicted to enhance nuclear activity. We find that the covering factor of the obscuring material in M51a is $0.26 pm 0.03$, consistent with the local AGN obscured fraction at $L_{rm X}sim 10^{40}$ erg s$^{-1}$. The substantial obscuring column does not support theories that the torus, presumed responsible for the obscuration, disappears at these low accretion luminosities. However, the obscuration may have resulted from the gas infall driven by the merger rather than the accretion process. We report on several extra-nuclear sources with $L_{rm X}>10^{39}$ erg s$^{-1}$ and find that a spectral turnover is present below 10 keV in most such sources, in line with recent results on ultraluminous X-ray sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا