ﻻ يوجد ملخص باللغة العربية
The concordance model in cosmology, $Lambda$CDM, is able to fit the main cosmological observations with a high level of accuracy. However, around 95% of the energy content of the Universe within this framework remains still unknown. In this work we focus on the dark matter component and we investigate the generalized dark matter (GDM) model, which allows for non-pressure-less dark matter and a non-vanishing sound speed and viscosity. We first focus on current observations, showing that GDM could alleviate the tension between cosmic microwave background and weak lensing observations. We then investigate the ability of the photometric Euclid survey (photometric galaxy clustering, weak lensing, and their cross-correlations) to constrain the nature of dark matter. We conclude that Euclid will provide us with very good constraints on GDM, enabling us to better understand the nature of this fluid, but a non-linear recipe adapted to GDM is clearly needed in order to correct for non-linearities and get reliable results down to small scales.
Euclid is a European Space Agency medium class mission selected for launch in 2019 within the Cosmic Vision 2015-2025 programme. The main goal of Euclid is to understand the origin of the accelerated expansion of the Universe. Euclid will explore the
Euclid is a European Space Agency medium class mission selected for launch in 2020 within the Cosmic Vision 2015 2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the e
We develop the framework for testing Lorentz invariance in the dark matter sector using galactic dynamics. We consider a Lorentz violating (LV) vector field acting on the dark matter component of a satellite galaxy orbiting in a host halo. We introdu
The braneworld model proposed by Dvali, Gabadadze and Porrati (DGP) leads to an accelerated universe without cosmological constant or other form of dark energy for the positive branch $(epsilon =+1)$. For the negative branch $(epsilon =-1)$ we have i
In the thermal dark matter (DM) paradigm, primordial interactions between DM and Standard Model particles are responsible for the observed DM relic density. In Boehm et al. (2014), we showed that weak-strength interactions between DM and radiation (p