Detecting light is fundamental to all optical experiments and applications. At the single photon level, the quantised nature of light requires specialised detectors, which typically saturate for more than one photon, rendering the measurement of bright light impossible. Saturation can be partially overcome by multiplexing single-photon-sensitive detectors, enabling measurement up to tens of photons. However, current approaches are still far from bridging the gap to bright light levels. Here, we report on a massively-multiplexed single-photon detector, which exhibits a dynamic range of 123 dB, from optical energies as low as $mathbf{10^{-7}}$ photons per pulse to $mathbf{sim2.5times10^{5}}$ photons per pulse. This allows us to calibrate a single photon detector directly to a power meter. The use of a single-photon sensitive detector further allows us to characterise the nonclassical features of a variety of quantum states. This device will find application where high dynamic range and single-photon sensitivity are required.