ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of thermonuclear X-ray bursts on non-burst emissions in the soft state of 4U 1728--34

104   0   0.0 ( 0 )
 نشر من قبل Sudip Bhattacharyya
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has recently been shown that the persistent emission of a neutron star low-mass X-ray binary (LMXB) evolves during a thermonuclear (type-I) X-ray burst. The reason of this evolution, however, is not securely known. This uncertainty can introduce significant systematics in the neutron star radius measurement using burst spectra, particularly if an unknown but significant fraction of the burst emission, which is reprocessed, contributes to the changes in the persistent emission during the burst. Here, by analyzing individual burst data of AstroSat/LAXPC from the neutron star LMXB 4U 1728--34 in the soft state, we show that the burst emission is not significantly reprocessed by a corona covering the neutron star. Rather, our analysis suggests that the burst emission enhances the accretion disk emission, possibly by increasing the accretion rate via disk. This enhanced disk emission, which is Comptonized by a corona covering the disk, can explain an increased persistent emission observed during the burst. This finding provides an understanding of persistent emission components, and their interaction with the thermonuclear burst emission. Furthermore, since burst photons are not significantly reprocessed, non-burst and burst emissions can be reliably separated, which is required to reduce systematic uncertainties in the stellar radius measurement.



قيم البحث

اقرأ أيضاً

The Neutron Star Interior Composition Explorer (NICER) has observed seven thermonuclear X-ray bursts from the Low Mass X-ray Binary (LMXB) neutron star 4U 1728-34 from the start of the missions operations until February of 2019. Three of these bursts show oscillations in their decaying tail with frequencies that are within 1 Hz of the previously detected burst oscillations from this source. Two of these burst oscillations have unusual properties: They have large fractional rms amplitudes of $ 48 pm 9 %$ and $ 46 pm 9 %$, and they are detected only at photon energies above 6 keV. By contrast, the third detected burst oscillation is compatible with previous observations of this source, with a fractional rms amplitude of $7.7 pm 1.5%$ rms in the 0.3 to 6.2 keV energy band. We discuss the implications of these large-amplitude burst oscillations, finding they are difficult to explain with the current theoretical models for X-ray burst tail oscillations.
We studied five XMM-Newton observations of the neutron-star binary 4U 1728$-$34 covering the hard, intermediate and soft spectral states. By jointly fitting the spectra with several reflection models, we obtained an inclination angle of 25$-$53$deg$ and an iron abundance up to 10 times the solar. From the fits with reflection models, we found that the fluxes of the reflection and the Comptonised components vary inconsistently; since the latter is assumed to be the illuminating source, this result possibly indicates the contribution of the neutron star surface/boundary layer to the disc reflection. As the source evolved from the relatively soft to the intermediate state, the disc inner radius decreased, opposite to the prediction of the standard accretion disc model. We also explore the possible reasons why the supersolar iron abundance is required by the data and found that this high value is probably caused by the absence of the hard photons in the XMM-Newton data.
While kilohertz quasi-periodic oscillations (kHz QPOs) have been well studied for decades since their initial discovery, the cause of these signals remains unknown, as no model has been able to accurately predict all of their spectral and timing prop erties. Separately, X-ray reverberation lags have been detected in AGN and stellar-mass black hole binaries, and reverberation may be expected to occur in neutron star systems as well, producing lags of the same amplitude as the lags measured of the kHz QPOs. Furthermore, the detection of a relativistically reflected Fe K line in the time-averaged spectra of many neutron star systems provides an additional motivation for testing reverberation. While it has been shown that the lag-energy properties of the lower kHz QPOs are unlikely to be produced by X-ray reverberation, the upper kHz QPOs have not yet been explored. We therefore model the upper kHz QPO lag-energy spectra using relativistic ray-tracing functions and apply them to archival RXTE data on 4U 1728-34 where upper kHz QPOs have been detected. By modeling the time-averaged spectra in which upper kHz QPOs had been significantly detected, we determine the reflected flux fraction across all energies and produce a model for the lag-energy spectra from X-ray reverberation. We explore the dependence of the modeled lag properties on several different types of reflection models, but are unable to successfully reproduce the measured lags of 4U 1728-34. We conclude that reverberation alone does not explain the measured time lags detected in upper kHz QPOs.
133 - M. Linares 2012
Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the neutron star interior. During the first year of a systematic all-sky search for X-ray burst s using the Gamma-ray Burst Monitor (GBM) aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09, when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12+/-3 d (68% confidence interval) between March 2010 and March 2011, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 d (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations, and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias towards detecting only the longest and most energetic bursts from slowly accreting NSs.
We analysed an XMM-Newton plus a simultaneous Rossi X-ray Timing Explorer observation and a separate Suzaku observation of the neutron-star low-mass X-ray binary 4U 1728-34. We fitted the X-ray spectra with the self-consistent reflection model relxil l. We found that the inclination angle of 4U 1728-34 is 49 degrees, consistent with the upper limit of 60 degrees deduced from the absence of eclipses or dips in this source. The inclination angle in the fit of the XMM-Newton/RXTE observation is larger than 85 degrees, which may be due to the possible calibration issues of the PN instrument in timing mode. We also found that the thermal emission from the accretion disc is not significant. This could be explained either by the relatively high column density of the interstellar medium along the line of sight to the source, which decreases the number of soft disc photons, or if most of the soft thermal photons from the disc are reprocessed in the corona. The ionisation parameter derived from the fits is larger than the value predicted in the framework of the standard reflection model, wherein the disc is irradiated by an X-ray source above the compact object. This inconsistency suggests that irradiation from the neutron star and its boundary layer may play an important role in the ionisation of the accretion disc, and hence in the reflection component in this source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا