ﻻ يوجد ملخص باللغة العربية
In this paper, we study the mean field limit of interacting particles with memory that are governed by a system of interacting non-Markovian Langevin equations. Under the assumption of quasi-Markovianity (i.e. that the memory in the system can be described using a finite number of auxiliary processes), we pass to the mean field limit to obtain the corresponding McKean-Vlasov equation in an extended phase space. We obtain the fundamental solution (Greens function) for this equation, for the case of a quadratic confining potential and a quadratic (Curie-Weiss) interaction. Furthermore, for nonconvex confining potentials we characterize the stationary state(s) of the McKean-Vlasov equation, and we show that the bifurcation diagram of the stationary problem is independent of the memory in the system. In addition, we show that the McKean-Vlasov equation for the non-Markovian dynamics can be written in the GENERIC formalism and we study convergence to equilibrium and the Markovian asymptotic limit.
In this article we investigate the phase transition phenomena that occur in a model of self-organisation through body-attitude coordination. Here, the body-attitude of an agent is modelled by a rotation matrix in $mathbb{R}^3$ as in [Degond, Frouvell
We provide a proof of mean-field convergence of first-order dissipative or conservative dynamics of particles with Riesz-type singular interaction (the model interaction is an inverse power $s$ of the distance for any $0<s<d$) when assuming a certain
In this paper we consider systems of weakly interacting particles driven by colored noise in a bistable potential, and we study the effect of the correlation time of the noise on the bifurcation diagram for the equilibrium states. We accomplish this
In this paper, we consider the mean field limit of Brownian particles with Coulomb interaction in 3D space. In particular, using a symmetrization technique, we show that the limit measure almost surely is a weak solution to the limiting nonlinear Fok
The starting point of our analysis is a class of one-dimensional interacting particle systems with two species. The particles are confined to an interval and exert a nonlocal, repelling force on each other, resulting in a nontrivial equilibrium confi