ﻻ يوجد ملخص باللغة العربية
In a transient magnetic field, heavy quarkonium bound states evolve non adiabatically. In presence of a strong magnetic field, $J/Psi$ and $Upsilon(1S)$ become more tightly bound than we expected earlier for a pure thermal medium. We have shown that in a time varying magnetic field, there is a possibility of moderate suppression of $J/Psi$ through the non adiabatic transition to continuum where as the $Upsilon(1S)$ is so tightly bound that can not be dissociated through this process. We have calculated the dissociation probabilities up to the first order in the time dependent perturbation theory for different values of initial magnetic field intensity.
The dissociation of heavy quarkonia in the constrained space is calculated at leading order compared with that in infinitely large medium. To deal with the summation of the discrete spectrum, a modified Euler-Maclaurin formula is developed as our num
We have investigated the effects of strong magnetic field on the properties of quarkonia immersed in a thermal medium of quarks and gluons and studied its quasi-free dissociation due to the Landau-damping. Thermalizing the Schwinger propagator in the
We study the effect of magnetic field on heavy quark-antiquark pair in both Einstein-Maxwell(EM) and Einstein-Maxwell-Dilaton(EMD) model. The interquark distance, free energy, entropy, binding energy and internal energy of the heavy quarkonium are ca
The masses and decay widths of charmonium states are studied in the presence of strong magnetic fields. The mixing between the pseudoscalar and vector charmonium states at rest is observed to lead to appreciable negative (positive) shifts in the mass
The masses of the strange mesons ($K$, $K^*$ and $phi$) are investigated in the presence of strong magnetic fields. The changes in the masses of these mesons arise from the mixing of the pseusdoscalar and vector mesons in the presence of a magnetic f