ﻻ يوجد ملخص باللغة العربية
In the present paper, we study the (twisted) 3-canonical map of varieties of Albanese fiber dimension one. Based on a theorem about the regularity of direct image of canonical sheaves, we prove that the 3-canonical map is generically birational when the genus of a general fiber of the Albanese map is 2.
In this paper we will prove a uniformity result for the Iitaka fibration $f:X rightarrow Y$, provided that the generic fiber has a good minimal model and the variation of $f$ is zero or that $kappa(X)=rm{dim}(X)-1$.
For a smooth projective complex variety whose Albanese morphism is finite, we show that every Bridgeland stability condition on its bounded derived category of coherent sheaves is geometric, in the sense that all skyscraper sheaves are stable with th
In this paper we prove some general results on secant defective varieties. Then we focus on the 4--dimensional case and we give the full classification of secant defective 4--folds. This paper has been inspired by classical work by G. Scorza,
OGrady constructed a 6-dimensional irreducible holomorphic symplectic variety by taking a crepant resolution of some moduli space of stable sheaves on an abelian surface. In this paper, we naturally extend OGradys construction to fields of positive c
Let $X$ be a strictly log canonical Fano variety, we show that every lc place of complements is dreamy, and there exists a correspondence between weakly special test configurations of $(X,-K_X)$ and lc places of complements.