ﻻ يوجد ملخص باللغة العربية
The spin-wave dynamics of the ferromagnetic nanoarrays termed artificial spin ice (ASI) are known to vary depending on their magnetic microstate. However, little work has been done to characterise this relationship. Recent advances in control over the magnetic configuration of ASI bring designs harnessing the interplay between spin-wave eigenmodes and the microstate within reach, offering diverse applications including reconfigurable magnonic crystals, microwave filters and microstate read-out probes. These designs hinge on a strong understanding of the underlying spin wave-microstate correspondence. Here, we analyse the effects of the magnetic microstate on spin-wave spectra of honeycomb ASI systems via micromagnetic simulation. We find the spin-wave spectrum to be highly-tunable via the microstate to an enhanced degree relative to existing magnonic crystals, with mode shifting and (de)activation realised by reversing individual nanoislands. Symmetries of ASI systems and the chirality of magnetic defects are found to play important roles in determining the high-frequency response.
Magnetization dynamics in an artificial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich s
Artificial square spin ices are structures composed of magnetic elements arranged on a geometrically frustrated lattice and located on the sites of a two-dimensional square lattice, such that there are four interacting magnetic elements at each verte
Artificial spin ices are ensembles of geometrically-arranged, interacting nanomagnets which have shown promising potential for the realization of reconfigurable magnonic crystals. Such systems allow for the manipulation of spin waves on the nanoscale
Artificial spin ices are periodic arrangements of interacting nanomagnets successfully used to investigate emergent phenomena in the presence of geometric frustration. Recently, it has been shown that artificial spin ices can be used as building bloc
Artificial spin ices are magnetic metamaterials comprising geometrically-tiled interacting nanomagnets. There is significant interest in these systems for reconfigurable magnonics due to their vast microstate landscape. Studies to-date have focused o