ﻻ يوجد ملخص باللغة العربية
We present a survey for the tightest visual binaries among 0.3-2 Msun members the Orion Nebula Cluster (ONC). Among 42 targets, we discovered 13 new 0.025-0.15 companions. Accounting for the Branch bias, we find a companion star fraction (CSF) in the 10-60 au range of 21+8/-5%, consistent with that observed in other star-forming regions (SFRs) and twice as high as among field stars; this excess is found with a high level of confidence. Since our sample is dominated by disk-bearing targets, this indicates that disk disruption by close binaries is inefficient, or has not yet taken place, in the ONC. The resulting separation distribution in the ONC drops sharply outside 60,au. These findings are consistent with a scenario in which the initial multiplicity properties, set by the star formation process itself, are identical in the ONC and in other SFRs and subsequently altered by the clusters dynamical evolution. This implies that the fragmentation process does not depend on the global properties of a molecular cloud, but on the local properties of prestellar cores, and that the latter are self-regulated to be nearly identical in a wide range of environments. These results, however, raise anew the question of the origin of field stars as the tight binaries we have discovered will not be destroyed as the ONC dissolves into the galactic field. It thus appears that most field stars formed in regions differ from well-studied SFRs in the Solar neighborhood, possibly due to changes in core fragmentation on Gyr timescales.
Our general understanding of multiple star and planet formation is primarily based on observations of young multiple systems in low density regions like Tau-Aur and Oph. Since many, if not most, of the stars are born in clusters, observational constr
(Abridged) Context: Both X-ray and radio observations offer insight into the high-energy processes of young stellar objects (YSOs). The observed thermal X-ray emission can be accompanied by both thermal and nonthermal radio emission. Due to variabili
We present the results of a binary population study in the Orion Nebula Cluster (ONC) using archival Hubble Space Telescope (HST) data obtained with the Advanced Camera for Surveys (ACS) in Johnson V filter (HST Proposal 10246, PI M. Robberto). Young
The high-quality OmegaCAM photometry of the 3x3 deg around the Orion Nebula Cluster (ONC) in r, and i filters by Beccari et al.(2017) revealed three well-separated pre-main sequences in the color-magnitude diagram (CMD). The objects belonging to the
We compare the observed size distribution of circum stellar disks in the Orion Trapezium cluster with the results of $N$-body simulations in which we incorporated an heuristic prescription for the evolution of these disks. In our simulations, the siz