ﻻ يوجد ملخص باللغة العربية
Biorthonormal basis function expansions are widely used in galactic dynamics, both to study problems in galactic stability and to provide numerical algorithms to evolve collisionless stellar systems. They also provide a compact and efficient description of the structure of numerical dark matter haloes in cosmological simulations. We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley, Sanders, Evans & Erkal expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the $gamma$ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding further examples. In the process, we also uncovered a novel integral transform solution to Poissons equation.
Efficient expansions of the gravitational field of (dark) haloes have two main uses in the modelling of galaxies: first, they provide a compact representation of numerically-constructed (or real) cosmological haloes, incorporating the effects of tria
Galaxy kinematics and gravitational lensing are two complementary ways to constrain the distribution of dark matter on galaxy scales. The typical dark matter density profiles adopted in dynamical studies cannot easily be adopted in lensing studies. I
Inspired by an interesting counterexample to the cosmic no-hair conjecture found in a supergravity-motivated model recently, we propose a multi-field extension, in which two scalar fields are allowed to non-minimally couple to two vector fields, resp
We report a simple method to generate potential/surface density pairs in flat axially symmetric finite size disks. Potential/surface density pairs consist of a ``homogeneous pair (a closed form expression) corresponding to a uniform disk, and a ``res
Star-forming galaxies display a close relation among stellar mass, metallicity and star-formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on m