ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental demonstration of an anisotropic exceptional point

85   0   0.0 ( 0 )
 نشر من قبل Kun Ding
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exceptional points (EPs) associated with a square-root singularity have been found in many non-Hermitian systems. In most of the studies, the EPs found are isotropic meaning that the same singular behavior is obtained independent of the direction from which they are approached in the parameter space. In this work, we demonstrate both theoretically and experimentally the existence of an anisotropic EP in an acoustic system that shows different singular behaviors when the anisotropic EP is approached from different directions in the parameter space. Such an anisotropic EP arises from the coalescence of two square-root EPs having the same chirality.



قيم البحث

اقرأ أيضاً

72 - Yuzhen Yang , Han Jia , Yafeng Bi 2019
Passive parity-time-symmetric medium provides a feasible scheme to investigate non-Hermitian systems experimentally. Here, we design a passive PT-symmetric acoustic grating with a period equal to exact PT-symmetric medium. This treatment enhances the diffraction ability of a passive PT-symmetric grating with more compact modulation. Above all, it eliminates the first-order disturbance of previous design in diffraction grating. Additional cavities and small leaked holes on top plate in a 2D waveguide are used to construct a parity-time-symmetric potential. The combining between additional cavities and leaked holes makes it possible to modulate the real and imaginary parts of refractive index simultaneously. When the real and imaginary parts of refractive index are balanced in modulation, asymmetric diffraction can be observed between a pair of oblique incident waves. This demonstration provides a feasible way to construct passive parity-time-symmetric acoustic medium. It opens new possibilities for further investigation of acoustic wave control in non-Hermitian systems.
Slow light based on the effect of electromagnetically induced transparency is of great interest due to its applications in low-light-level nonlinear optics and quantum information manipulation. The previous experiments all dealt with the single-compo nent slow light. Here we report the experimental demonstration of two-component or spinor slow light using a double tripod atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. Based on the stored light, our data showed that the double tripod scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. We experimentally demonstrated a possible application of the double tripod scheme as quantum memory/rotator for the two-color qubit. Our study also suggests that the spinor slow light is a better method than a widely-used scheme in the nonlinear frequency conversion.
We introduce a reverse engineering approach to drive a RC circuit. This technique is implemented experimentally 1) to reach a stationary regime associated to a sinusoidal driving in very short amount of time, 2) to ensure a fast discharge of the capa citor, and 3) to guarantee a fast change of stationary regime associated to different driving frequencies. This work can be used as a simple experimental project dedicated to the computer control of a voltage source. Besides the specific example addressed here, the proposed method provides an original use of simple linear differential equation to control the dynamical quantities of a physical system, and has therefore a certain pedagogical value.
Manipulating the excitation of resonant electric and magnetic multipole moments in structured dielectric media has unlocked many sophisticated electromagnetic functionalities. This article demonstrates the experimental realization of a broadband Huyg ens source. This Huygens source consists of a spherical particle that exhibits a well-defined forward-scattering pattern across more than an octave-spanning spectral band at GHz frequencies, where the scattering in the entire backward hemisphere is suppressed. Two different low-index nonmagnetic spheres are studied that differ in their permittivity. This causes them to offer a different shape for the forward-scattering pattern. The theoretical understanding of this broadband feature is based on the approximate equality of the resonant electric and magnetic multipole moments in both amplitude and phase in low permittivity spheres. This is a key condition to approximate the electromagnetic duality symmetry which, together with the spherical symmetry, suppresses the backscattering. With such a configuration, broadband Huygens sources can be designed even if magnetic materials are unavailable. This article provides guidelines for designing broadband Huygens sources using low-index spheres that could be valuable to a plethora of applications.
89 - C. Dembowski 2004
We calculate analytically the geometric phases that the eigenvectors of a parametric dissipative two-state system described by a complex symmetric Hamiltonian pick up when an exceptional point (EP) is encircled. An EP is a parameter setting where the two eigenvalues and the corresponding eigenvectors of the Hamiltonian coalesce. We show that it can be encircled on a path along which the eigenvectors remain approximately real and discuss a microwave cavity experiment, where such an encircling of an EP was realized. Since the wavefunctions remain approximately real, they could be reconstructed from the nodal lines of the recorded spatial intensity distributions of the electric fields inside the resonator. We measured the geometric phases that occur when an EP is encircled four times and thus confirmed that for our system an EP is a branch point of fourth order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا