ﻻ يوجد ملخص باللغة العربية
We give some remarks on some manifolds K3 surfaces, Complex projective spaces, real projective space and Torus and the classification of two dimensional Riemannian surfaces, Green functions and the Stokes formula. We also, talk about traces of Sobolev spaces, the distance function, the notion of degree and a duality theorem, the variational formulation and conformal map in dimension 2, the metric on the boundary of a Lipschitz domain and polar geodesic coordinates and the Gauss-Bonnet formula and the positive mass theorem in dimension 3 and in the locally conformally flat case. And the Ricci flow. And fields and their relation to the equations.
In this article we show that all results proved for a large class of holomorphic germs $f : (mathbb{C}^{n+1}, 0) to (mathbb{C}, 0)$ with a 1-dimension singularity in [B.II] are valid for an arbitrary such germ.
We proove some inequalities concerning the product, sup * inf for some elliptic operators of order 2 and 4. Using those inequalities and the concentration phenomena we can describe the asymptotic behavior of those PDE solutions.
The aim of this paper is to study a conjecture predicting a lower bound on the canonical height on abelian varieties, formulated by S. Lang and generalized by J. H. Silverman. We give here an asymptotic result on the height of Heegner points on the m
On the rank of Jacobians over function fields.} Let $f:mathcal{X}to C$ be a projective surface fibered over a curve and defined over a number field $k$. We give an interpretation of the rank of the Mordell-Weil group over $k(C)$ of the jacobian of th
Let X be a complex analytic manifold and D subset X a free divisor. Integrable logarithmic connections along D can be seen as locally free {cal O}_X-modules endowed with a (left) module structure over the ring of logarithmic differential operators {c