ترغب بنشر مسار تعليمي؟ اضغط هنا

Quelques remarques sur les vari{e}t{e}s, fonctions de Green et formule de Stokes

124   0   0.0 ( 0 )
 نشر من قبل Samy Skander Bahoura
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give some remarks on some manifolds K3 surfaces, Complex projective spaces, real projective space and Torus and the classification of two dimensional Riemannian surfaces, Green functions and the Stokes formula. We also, talk about traces of Sobolev spaces, the distance function, the notion of degree and a duality theorem, the variational formulation and conformal map in dimension 2, the metric on the boundary of a Lipschitz domain and polar geodesic coordinates and the Gauss-Bonnet formula and the positive mass theorem in dimension 3 and in the locally conformally flat case. And the Ricci flow. And fields and their relation to the equations.



قيم البحث

اقرأ أيضاً

213 - Daniel Barlet 2007
In this article we show that all results proved for a large class of holomorphic germs $f : (mathbb{C}^{n+1}, 0) to (mathbb{C}, 0)$ with a 1-dimension singularity in [B.II] are valid for an arbitrary such germ.
We proove some inequalities concerning the product, sup * inf for some elliptic operators of order 2 and 4. Using those inequalities and the concentration phenomena we can describe the asymptotic behavior of those PDE solutions.
271 - Fabien Pazuki 2015
The aim of this paper is to study a conjecture predicting a lower bound on the canonical height on abelian varieties, formulated by S. Lang and generalized by J. H. Silverman. We give here an asymptotic result on the height of Heegner points on the m odular jacobian $J_{0}(N)$, and we derive non-trivial remarks about the conjecture.
On the rank of Jacobians over function fields.} Let $f:mathcal{X}to C$ be a projective surface fibered over a curve and defined over a number field $k$. We give an interpretation of the rank of the Mordell-Weil group over $k(C)$ of the jacobian of th e generic fibre (modulo the constant part) in terms of average of the traces of Frobenius on the fibers of $f$. The results also give a reinterpretation of the Tate conjecture for the surface $mathcal{X}$ and generalizes results of Nagao, Rosen-Silverman and Wazir.
Let X be a complex analytic manifold and D subset X a free divisor. Integrable logarithmic connections along D can be seen as locally free {cal O}_X-modules endowed with a (left) module structure over the ring of logarithmic differential operators {c al D}_X(log D). In this paper we study two related results: the relationship between the duals of any integrable logarithmic connection over the base rings {cal D}_X and {cal D}_X(log D), and a differential criterion for the logarithmic comparison theorem. We also generalize a formula of Esnault-Viehweg in the normal crossing case for the Verdier dual of a logarithmic de Rham complex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا