ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic integration in quasi-Banach spaces

150   0   0.0 ( 0 )
 نشر من قبل Petru A. Cioica-Licht
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we develop a stochastic integration theory for processes with values in a quasi-Banach space. The integrator is a cylindrical Brownian motion. The main results give sufficient conditions for stochastic integrability. They are natural extensions of known results in the Banach space setting. We apply our main results to the stochastic heat equation where the forcing terms are assumed to have Besov regularity in the space variable with integrability exponent $pin (0,1]$. The latter is natural to consider for its potential application to adaptive wavelet methods for stochastic partial differential equations.



قيم البحث

اقرأ أيضاً

This paper is devoted to the study of the relatively compact sets in Quasi-Banach function spaces, providing an important improvement of the known results. As an application, we take the final step in establishing a relative compactness criteria for function spaces with any weight without any assumption.
A class of maps in a complex Banach space is studied, which includes both unbounded linear operators and nonlinear holomorphic maps. The defining property, which we call {sl pseudo-contractivity}, is introduced by means of the Abel averages of such m aps. We show that the studied maps are dissipative in the spirit of the classical Lumer-Phillips theorem. For pseudo-contractive holomorphic maps, we establish the power convergence of the Abel averages to holomorphic retractions.
We completely characterize the boundedness of the Volterra type integration operators $J_b$ acting from the weighted Bergman spaces $A^p_alpha$ to the Hardy spaces $H^q$ of the unit ball of $mathbb{C}^n$ for all $0<p,q<infty$. A partial solution to t he case $n=1$ was previously obtained by Z. Wu in cite{Wu}. We solve the cases left open there and extend all the results to the setting of arbitrary complex dimension $n$. Our tools involve area methods from harmonic analysis, Carleson measures and Kahane-Khinchine type inequalities, factorization tricks for tent spaces of sequences, as well as techniques and integral estimates related to Hardy and Bergman spaces.
We show that the Gurarij space $mathbb{G}$ has extremely amenable automorphism group. This answers a question of Melleray and Tsankov. We also compute the universal minimal flow of the automorphism group of the Poulsen simplex $mathbb{P}$ and we prov e that it consists of the canonical action on $mathbb{P}$ itself. This answers a question of Conley and T{o}rnquist. We show that the pointwise stabilizer of any closed proper face of $mathbb{P}$ is extremely amenable. Similarly, the pointwise stabilizer of any closed proper biface of the unit ball of the dual of the Gurarij space (the Lusky simplex) is extremely amenable. These results are obtained via several Kechris-Pestov-Todorcevic correspondences, by establishing the approximate Ramsey property for several classes of finite-dimensional Banach spaces and function systems and thei
For a topological group G, we show that a compact metric G-space is tame if and only if it can be linearly represented on a separable Banach space which does not contain an isomorphic copy of $l_1$ (we call such Banach spaces, Rosenthal spaces). With this goal in mind we study tame dynamical systems and their representations on Banach spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا