ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovering Style Trends through Deep Visually Aware Latent Item Embeddings

322   0   0.0 ( 0 )
 نشر من قبل Kamelia Aryafar
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we explore Latent Dirichlet Allocation (LDA) and Polylingual Latent Dirichlet Allocation (PolyLDA), as a means to discover trending styles in Overstock from deep visual semantic features transferred from a pretrained convolutional neural network and text-based item attributes. To utilize deep visual semantic features in conjunction with LDA, we develop a method for creating a bag of words representation of unrolled image vectors. By viewing the channels within the convolutional layers of a Resnet-50 as being representative of a word, we can index these activations to create visual documents. We then train LDA over these documents to discover the latent style in the images. We also incorporate text-based data with PolyLDA, where each representation is viewed as an independent language attempting to describe the same style. The resulting topics are shown to be excellent indicators of visual style across our platform.



قيم البحث

اقرأ أيضاً

106 - Bowen Li , Xinping Ren , Ke Yan 2021
Depending on the application, radiological diagnoses can be associated with high inter- and intra-rater variabilities. Most computer-aided diagnosis (CAD) solutions treat such data as incontrovertible, exposing learning algorithms to considerable and possibly contradictory label noise and biases. Thus, managing subjectivity in labels is a fundamental problem in medical imaging analysis. To address this challenge, we introduce auto-decoded deep latent embeddings (ADDLE), which explicitly models the tendencies of each rater using an auto-decoder framework. After a simple linear transformation, the latent variables can be injected into any backbone at any and multiple points, allowing the model to account for rater-specific effects on the diagnosis. Importantly, ADDLE does not expect multiple raters per image in training, meaning it can readily learn from data mined from hospital archives. Moreover, the complexity of training ADDLE does not increase as more raters are added. During inference each rater can be simulated and a mean or greedy virtual rating can be produced. We test ADDLE on the problem of liver steatosis diagnosis from 2D ultrasound (US) by collecting 46 084 studies along with clinical US diagnoses originating from 65 different raters. We evaluated diagnostic performance using a separate dataset with gold-standard biopsy diagnoses. ADDLE can improve the partial areas under the curve (AUCs) for diagnosing severe steatosis by 10.5% over standard classifiers while outperforming other annotator-noise approaches, including those requiring 65 times the parameters.
Neural Style Transfer (NST) has quickly evolved from single-style to infinite-style models, also known as Arbitrary Style Transfer (AST). Although appealing results have been widely reported in literature, our empirical studies on four well-known AST approaches (GoogleMagenta, AdaIN, LinearTransfer, and SANet) show that more than 50% of the time, AST stylized images are not acceptable to human users, typically due to under- or over-stylization. We systematically study the cause of this imbalanced style transferability (IST) and propose a simple yet effective solution to mitigate this issue. Our studies show that the IST issue is related to the conventional AST style loss, and reveal that the root cause is the equal weightage of training samples irrespective of the properties of their corresponding style images, which biases the model towards certain styles. Through investigation of the theoretical bounds of the AST style loss, we propose a new loss that largely overcomes IST. Theoretical analysis and experimental results validate the effectiveness of our loss, with over 80% relative improvement in style deception rate and 98% relatively higher preference in human evaluation.
108 - Rujie Yin 2016
This paper presents a content-aware style transfer algorithm for paintings and photos of similar content using pre-trained neural network, obtaining better results than the previous work. In addition, the numerical experiments show that the style pat tern and the content information is not completely separated by neural network.
Style transfer aims to reproduce content images with the styles from reference images. Existing universal style transfer methods successfully deliver arbitrary styles to original images either in an artistic or a photo-realistic way. However, the ran ge of arbitrary style defined by existing works is bounded in the particular domain due to their structural limitation. Specifically, the degrees of content preservation and stylization are established according to a predefined target domain. As a result, both photo-realistic and artistic models have difficulty in performing the desired style transfer for the other domain. To overcome this limitation, we propose a unified architecture, Domain-aware Style Transfer Networks (DSTN) that transfer not only the style but also the property of domain (i.e., domainness) from a given reference image. To this end, we design a novel domainness indicator that captures the domainness value from the texture and structural features of reference images. Moreover, we introduce a unified framework with domain-aware skip connection to adaptively transfer the stroke and palette to the input contents guided by the domainness indicator. Our extensive experiments validate that our model produces better qualitative results and outperforms previous methods in terms of proxy metrics on both artistic and photo-realistic stylizations.
Rather than simply recognizing the action of a person individually, collective activity recognition aims to find out what a group of people is acting in a collective scene. Previ- ous state-of-the-art methods using hand-crafted potentials in conventi onal graphical model which can only define a limited range of relations. Thus, the complex structural de- pendencies among individuals involved in a collective sce- nario cannot be fully modeled. In this paper, we overcome these limitations by embedding latent variables into feature space and learning the feature mapping functions in a deep learning framework. The embeddings of latent variables build a global relation containing person-group interac- tions and richer contextual information by jointly modeling broader range of individuals. Besides, we assemble atten- tion mechanism during embedding for achieving more com- pact representations. We evaluate our method on three col- lective activity datasets, where we contribute a much larger dataset in this work. The proposed model has achieved clearly better performance as compared to the state-of-the- art methods in our experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا