Small-Set Expansion in Shortcode Graph and the 2-to-2 Conjecture


الملخص بالإنكليزية

Dinur, Khot, Kindler, Minzer and Safra (2016) recently showed that the (imperfect completeness variant of) Khots 2 to 2 games conjecture follows from a combinatorial hypothesis about the soundness of a certain Grassmanian agreement tester. In this work, we show that the hypothesis of Dinur et. al. follows from a conjecture we call the Inverse Shortcode Hypothesis characterizing the non-expanding sets of the degree-two shortcode graph. We also show the latter conjecture is equivalent to a characterization of the non-expanding sets in the Grassman graph, as hypothesized by a follow-up paper of Dinur et. al. (2017). Following our work, Khot, Minzer and Safra (2018) proved the Inverse Shortcode Hypothesis. Combining their proof with our result and the reduction of Dinur et. al. (2016), completes the proof of the 2 to 2 conjecture with imperfect completeness. Moreover, we believe that the shortcode graph provides a useful view of both the hypothesis and the reduction, and might be useful in extending it further.

تحميل البحث