ﻻ يوجد ملخص باللغة العربية
Open cluster members are coeval and share the same initial bulk chemical compositions. Consequently, differences in surface abundances between members of a cluster that are at different evolutionary stages can be used to study the effects of mixing and internal chemical processing. We carry out an abundance analysis of seven elements (Li, O, Na, Mg, Al, Si, Fe) in 66 stars belonging to the open cluster M67, based on high resolution GALAH spectra, 1D MARCS model atmospheres, and, for the first time for a large sample of M67 stars, non-local thermodynamic equilibrium (non-LTE) radiative transfer. From the non-LTE analysis, we find a typical star-to-star scatter in the abundance ratios of around 0.05 dex; this scatter is slightly but systematically larger when LTE is assumed instead. We find trends in the abundance ratios with effective temperature, indicating systematic differences in the surface abundances between turn-off and giant stars; these trends are more pronounced when LTE is assumed. However, in the non-LTE analysis, most of the element trends have been flattened. Two species are exceptions to this behaviour, namely Al and Si, which both clearly display remaining trends in the non-LTE analysis. We comment on the possible origin of these trends, by comparing them with recent stellar models that include atomic diffusion.
Massive sets of stellar spectroscopic observations are rapidly becoming available and these can be used to determine the chemical composition and evolution of the Galaxy with unprecedented precision. One of the major challenges in this endeavour invo
GALAH and APOGEE are two high resolution multi object spectroscopic surveys that provide fundamental stellar parameters and multiple elemental abundance estimates for $>$ 400,000 stars in the Milky Way. They are complimentary in both sky coverage and
Stars in open clusters are expected to share an identical abundance pattern. Establishing the level of chemical homogeneity in a given open cluster deserves further study as it is the basis of the concept of chemical tagging to unravel the history of
We present a study of the bright detached eclipsing main sequence binary WOCS 11028 (Sanders 617) in the open cluster M67. Although the binary has only one eclipse per orbital cycle, we show that the masses of the stars can be derived very precisely
Mixing mechanisms bring the Li from the base of the convective zone to deeper and warmer layers where it is destroyed. These mechanisms are investigated by comparing observations of Li abundances in stellar atmospheres to models of stellar evolution.