ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of a crossover from nodal to gapped superconductivity in Lu$_x$Zr$_{1-x}$B$_{12}$

75   0   0.0 ( 0 )
 نشر من قبل Franziska Kirschner
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have determined the superconducting and magnetic properties of four samples of Lu$_x$Zr$_{1-x}$B$_{12}$ ($x=0.04$, $0.07$, $0.17$, and $0.8$) using muon spin rotation ($mu$SR) and magnetometry measurements. We observed a strong magnetic signal in both the $mu$SR and magnetometry data in one sample ($x=0.07$), likely caused by the formation of static moments of size $approx 1,mu_{rm B}$ due to a clustering effect of the Lu$^{3+}$ ions. In all other samples, we find only a small magnetic signal in the $mu$SR data thought to originate from boron nuclei in the B$_{12}$ cages. The superconductivity is found to evolve with $x$, with a decrease in $x$ resulting in an increase in critical temperature and a decrease of the penetration depth. Most remarkably, we find the formation of nodes in the superconducting gap for $x leq 0.17$, providing a new example of an $s$-to-$d$-wave crossover in a superconductor.



قيم البحث

اقرأ أيضاً

Lutetium dodecaboride LuB12 is a simple weak-coupling BCS superconductor with critical temperature Tc = 0.42 K, whilst ZrB12 is a strong-coupling BCS superconductor with the highest critical temperature Tc = 6.0 K among this group of materials. In ca se of lutetium substitution by zirconium ions in LuB12 the crossover from weak- to strong-coupling superconductor can be studied. We have investigated the evolution of critical temperature Tc and critical field Hc in high-quality single crystalline superconducting samples of Lu(1-x)Zr(x)B12 (0 =< x =< 0.45) by measuring magnetic ac susceptibility between 1 K and 50 mK. To obtain this kind of experimental data, a new susceptometer was designed, constructed and tested, which can work in a wide temperature range of 0.05 K - 3 K in 3He-4He dilution refrigerator. The measurements with this new susceptometer revealed how Tc(x) and Hc(x) increases with increasing concentration of zirconium in Lu(1-x)Zr(x)B12 solid solutions as well as how their superconducting phase diagram develops.
Based on low temperature resistivity, heat capacity and magnetization investigations we show that the unusually strong suppression of superconductivity in Lu$_x$Zr$_{1-x}$B$_{12}$ BSC-type superconductors in the range $x$$<$0.08 is caused by the emer gence of static spin polarization in the vicinity of non-magnetic lutetium impurities. The analysis of received results points to a formation of static magnetic moments with $mu_{eff}$$approx$$3mu_B$ per Lu-ion. The size of these spin polarized nanodomains was estimated to be about 5 ${AA}$.
242 - Y. Mizukami , M. Haze , O. Tanaka 2021
The BCS-BEC crossover from strongly overlapping Cooper pairs to non-overlapping composite bosons in the strong coupling limit has been a long-standing issue of interacting many-body fermion systems. Recently, FeSe semimetal with hole and electron ban ds emerged as a high-$T_{rm c}$ superconductor located in the BCS-BEC crossover regime, owing to its very small Fermi energies. In FeSe, however, an ordinary BCS-like heat-capacity jump is observed at $T_{rm c}$, posing a fundamental question on the characteristics of the BCS-BEC crossover. Here we report on high-resolution heat capacity, magnetic torque, and scanning tunneling spectroscopy measurements in FeSe$_{1-x}$S$_x$. Upon entering the tetragonal phase at $x>0.17$, where nematic order is suppressed, $T_{rm c}$ discontinuously decreases. In this phase, highly non-mean-field behaviors consistent with BEC-like pairing are found in the thermodynamic quantities with giant superconducting fluctuations extending far above $T_{rm c}$, implying the change of pairing nature. Moreover, the pseudogap formation, which is expected in BCS-BEC crossover of single-band superconductors, is not observed in the tunneling spectra. These results illuminate highly unusual features of the superconducting states in the crossover regime with multiband electronic structure and competing electronic instabilities.
The binary Re$_{1-x}$Mo$_x$ alloys, known to cover the full range of solid solutions, were successfully synthesized and their crystal structures and physical properties investigated via powder x-ray diffraction, electrical resistivity, magnetic susce ptibility, and heat capacity. By varying the Re/Mo ratio we explore the full Re$_{1-x}$Mo$_x$ binary phase diagram, in all its four different solid phases: hcp-Mg ($P6_3/mmc$), $alpha$-Mn ($Ioverline{4}3m$), $beta$-CrFe ($P4_2/mnm$), and bcc-W ($Imoverline{3}m$), of which the second is non-centrosymmetric with the rest being centrosymmetric. All Re$_{1-x}$Mo$_x$ alloys are superconductors, whose critical temperatures exhibit a peculiar phase diagram, characterized by three different superconducting regions. In most alloys the $T_c$ is almost an order of magnitude higher than in pure Re and Mo. Low-temperature electronic specific-heat data evidence a fully-gapped superconducting state, whose enhanced gap magnitude and specific-heat discontinuity suggest a moderately strong electron-phonon coupling across the series. Considering that several $alpha$-Mn-type Re$T$ alloys ($T$ = transition metal) show time-reversal symmetry breaking (TRSB) in the superconducting state, while TRS is preserved in the isostructural Mg$_{10}$Ir$_{19}$B$_{16}$ or Nb$_{0.5}$Os$_{0.5}$, the Re$_{1-x}$Mo$_x$ alloys represent another suitable system for studying the interplay of space-inversion, gauge, and time-reversal symmetries in future experiments expected to probe TRSB in the Re$T$ family.
The Pr-rich end of the alloy series Pr$_{1-x}$Nd$_x$Os$_4$Sb$_{12}$ has been studied using muon spin rotation and relaxation. The end compound PrOs$_4$Sb$_{12}$ is an unconventional heavy-fermion superconductor, which exhibits a spontaneous magnetic field in the superconducting phase associated with broken time-reversal symmetry. No spontaneous field is observed in the Nd-doped alloys for x $>$ 0.05. The superfluid density is insensitive to Nd concentration, and no Nd$^{3+}$ static magnetism is found down to the lowest temperatures of measurement. Together with the slow suppression of the superconducting transition temperature with Nd doping, these results suggest anomalously weak coupling between Nd spins and conduction-band states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا