ترغب بنشر مسار تعليمي؟ اضغط هنا

Highest-frequency detection of FRB 121102 at 4-8 GHz using the Breakthrough Listen Digital Backend at the Green Bank Telescope

55   0   0.0 ( 0 )
 نشر من قبل Gajjar Vishal
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first detections of the repeating fast radio burst source FRB 121102 above 5.2 GHz. Observations were performed using the 4$-$8 GHz receiver of the Robert C. Byrd Green Bank Telescope with the Breakthrough Listen digital backend. We present the spectral, temporal and polarization properties of 21 bursts detected within the first 60 minutes of a total 6-hour observations. These observations comprise the highest burst density yet reported in the literature, with 18 bursts being detected in the first 30 minutes. A few bursts clearly show temporal sub-structures with distinct spectral properties. These sub-structures superimpose to provide enhanced peak signal-to-noise ratio at higher trial dispersion measures. Broad features occur in $sim 1$ GHz wide subbands that typically differ in peak frequency between bursts within the band. Finer-scale structures ($sim 10-50$ MHz) within these bursts are consistent with that expected from Galactic diffractive interstellar scintillation. The bursts exhibit nearly 100% linear polarization, and a large average rotation measure of 9.359$pm$0.012 $times$ 10$^{rm 4}$ rad m$^{rm -2}$ (in the observers frame). No circular polarization was found for any burst. We measure an approximately constant polarization position angle in the 13 brightest bursts. The peak flux densities of the reported bursts have average values (0.2$pm$0.1 Jy), similar to those seen at lower frequencies ($<3$ GHz), while the average burst widths (0.64$pm$0.46 ms) are relatively narrower.



قيم البحث

اقرأ أيضاً

The star EPIC 249706694 (HD 139139) was found to exhibit 28 transit-like events over an 87 day period during the Kepler missions K2 Campaign 15 (Rappaport et al. 2019). These events did not fall into an identifiable pattern and could not be explained by a multitude of transit scenarios explored by the authors. We conduct follow-up observations at C-band frequencies with the Green Bank Telescope as part of the ongoing Breakthrough Listen search for technosignatures. We search for narrow band signals above a signal-to-noise threshold of 10 and with Doppler drift rates within +-5 Hz/s. We detect no evidence of technosignatures from EPIC 249706694 and derive an upper limit for the EIRP (Equivalent Isotropic Radiated Power) of putative transmissions to be 10 TW.
We report polarization properties for eight narrowband bursts from FRB 121102 that have been re-detected in a high-frequency (4-8 GHz) Breakthrough Listen observation with the Green Bank Telescope, originally taken on 2017 August 26. The bursts were found to exhibit nearly 100% linear polarization, Faraday rotation measures (RM) bordering 9.3$times$10$^4$ rad-m$^{-2}$, and stable polarization position angles (PA), all of which agree with burst properties previously reported for FRB 121102 at the same epoch. We confirm that these detections are indeed physical bursts with limited spectral occupancies and further support the use of sub-banded search techniques in FRB detection.
MUSTANG is a 90 GHz bolometer camera built for use as a facility instrument on the 100 m Robert C. Byrd Green Bank radio telescope (GBT). MUSTANG has an 8 by 8 focal plane array of transition edge sensor bolometers read out using time-domain multiple xed SQUID electronics. As a continuum instrument on a large single dish MUSTANG has a combination of high resolution (8) and good sensitivity to extended emission which make it very competitive for a wide range of galactic and extragalactic science. Commissioning finished in January 2008 and some of the first science data have been collected.
This paper introduces the data cubes from GHIGLS, deep Green Bank Telescope surveys of the 21-cm line emission of HI in 37 targeted fields at intermediate Galactic latitude. The GHIGLS fields together cover over 1000 square degrees at 9.55 spatial re solution. The HI spectra have an effective velocity resolution about 1.0 km/s and cover at least -450 < v < +250 km/s. GHIGLS highlights that even at intermediate Galactic latitude the interstellar medium is very complex. Spatial structure of the HI is quantified through power spectra of maps of the column density, NHI. For our featured representative field, centered on the North Ecliptic Pole, the scaling exponents in power-law representations of the power spectra of NHI maps for low, intermediate, and high velocity gas components (LVC, IVC, and HVC) are -2.86 +/- 0.04, -2.69 +/- 0.04, and -2.59 +/- 0.07, respectively. After Gaussian decomposition of the line profiles, NHI maps were also made corresponding to the narrow-line and broad-line components in the LVC range; for the narrow-line map the exponent is -1.9 +/- 0.1, reflecting more small scale structure in the cold neutral medium (CNM). There is evidence that filamentary structure in the HI CNM is oriented parallel to the Galactic magnetic field. The power spectrum analysis also offers insight into the various contributions to uncertainty in the data. The effect of 21-cm line opacity on the GHIGLS NHI maps is estimated.
We present 11 detections of FRB 121102 in ~3 hours of observations during its active period on the 10th of September 2019. The detections were made using the newly deployed MeerTRAP system and single pulse detection pipeline at the MeerKAT radio tele scope in South Africa. Fortuitously, the Nancay radio telescope observations on this day overlapped with the last hour of MeerKAT observations and resulted in 4 simultaneous detections. The observations with MeerKATs wide band receiver, which extends down to relatively low frequencies (900-1670 MHz usable L-band range), have allowed us to get a detailed look at the complex frequency structure, intensity variations and frequency-dependent sub-pulse drifting. The drift rates we measure for the full-band and sub-banded data are consistent with those published between 600-6500 MHz with a slope of -0.147 +/- 0.014 ms^-1. Two of the detected bursts exhibit fainter precursors separated from the brighter main pulse by ~28 ms and ~34 ms. A follow-up multi-telescope campaign on the 6th and 8th October 2019 to better understand these frequency drifts and structures over a wide and continuous band was undertaken. No detections resulted, indicating that the source was inactive over a broad frequency range during this time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا