ﻻ يوجد ملخص باللغة العربية
In this work we detail a novel open source library, called MMLSpark, that combines the flexible deep learning library Cognitive Toolkit, with the distributed computing framework Apache Spark. To achieve this, we have contributed Java Language bindings to the Cognitive Toolkit, and added several new components to the Spark ecosystem. In addition, we also integrate the popular image processing library OpenCV with Spark, and present a tool for the automated generation of PySpark wrappers from any SparkML estimator and use this tool to expose all work to the PySpark ecosystem. Finally, we provide a large library of tools for working and developing within the Spark ecosystem. We apply this work to the automated classification of Snow Leopards from camera trap images, and provide an end to end solution for the non-profit conservation organization, the Snow Leopard Trust.
Deep learning (DL) is becoming increasingly popular in several application domains and has made several new application features involving computer vision, speech recognition and synthesis, self-driving automobiles, drug design, etc. feasible and acc
In an effort to overcome the data deluge in computational biology and bioinformatics and to facilitate bioinformatics research in the era of big data, we identify some of the most influential algorithms that have been widely used in the bioinformatic
Lattice Quantum ChromoDynamics (QCD), and by extension its parent field, Lattice Gauge Theory (LGT), make up a significant fraction of supercomputing cycles worldwide. As such, it would be irresponsible not to evaluate machines suitability for such a
Distributed training techniques have been widely deployed in large-scale deep neural networks (DNNs) training on dense-GPU clusters. However, on public cloud clusters, due to the moderate inter-connection bandwidth between instances, traditional stat
Deep learning recommendation models (DLRMs) are used across many business-critical services at Facebook and are the single largest AI application in terms of infrastructure demand in its data-centers. In this paper we discuss the SW/HW co-designed so