ﻻ يوجد ملخص باللغة العربية
High-dispersion spectroscopic monitoring of HESS J0632+057 has been carried out over four orbital cycles in order to search for orbital modulation, covering the entire orbital phase. We have measured radial velocity of H$alpha$ emission line with the method introduced by Shafter et al. (1986), which has been successfully applied to some Be stars. The velocity is seen to increase much earlier than expected for the orbital period of 315 days, and much more steeply than expected at around apastron. The period of the H$alpha$ modulation is found to be as $308^{+26}_{-23}$ days. We have also analyzed Swift/XRT data from 2009 to 2015 to study the orbital modulation, selecting the data with good statistics ($geq$ 30 counts). With additional two-year data to the previous works, the orbital period has been updated to $313^{+11}_{-8}$ days, which is consistent with the previous X-ray periods and the spectroscopic one. The past XMM-Newton and Chandra observations prefer the period of 313 days. With the new period, assuming that H$alpha$ velocities accurately trace the motion of the Be star, we have derived a new set of the orbital parameters. In the new orbit, which is less eccentric ($e sim 0.6$), two outbursts occur after apastron, and just after periastron. Besides, the column density in bright phase ($4.7^{+0.9}_{-08}times10^{21};mathrm{cm^{-2}}$) is higher than in faint phase ($2.2pm0.5times10^{21};mathrm{cm^{-2}}$). These facts suggest that outbursts occur when the compact object passes nearby/through the Be disk. The mass function implies that mass of the compact object is less than 2.5 $mathrm{M_{sun}}$ assuming that the mass of the Be star is 13.2--18.2 $mathrm{M_{sun}}$ (Aragona at al. 2010) unless the inclination is extremely small. The photon index indicates that the spectra becomes softer when the system is bright. These suggest that the compact object is a pulsar.
We study changes in the $gamma$--ray intensity at very high energies observed from the $gamma$--ray binary HESS J0632+057. Publicly available data collected by Cherenkov telescopes were examined by means of a simple method utilizing solely the number
HD 259440 is a B0pe star that was proposed as the optical counterpart to the gamma-ray source HESS J0632+057. Here we present optical spectra of HD 259440 acquired to investigate the stellar parameters, the properties of the Be star disk, and evidenc
We present the results of UBVRI polarimetry of the TeV gamma-ray binary HESS J0632+057 obtained on 2015 March 24 (JD 2457106) and 2015 December 12 (JD 2457369). The detected polarisation values of HESS J0632+057, just after periastron passage (March
The variable gamma-ray source HESS J0632+057 is an excellent candidate for a gamma-ray binary. The putative binary system was discovered as a point-like VHE gamma-ray source by HESS. Later measurements by VERITAS yielding no detection, provided evide
The High Energy Stereoscopic System (HESS) survey of the Galactic plane has established the existence of a substantial number (~40) of Galactic TeV gamma-ray sources, a large fraction of which remain unidentified. HESS J0632+057 is one of a small fra