ﻻ يوجد ملخص باللغة العربية
We perform a kinematic and morphological analysis of 44 star-forming galaxies at $zsim2$ in the COSMOS legacy field using near-infrared spectroscopy from Keck/MOSFIRE and F160W imaging from CANDELS/3D-HST as part of the ZFIRE survey. Our sample consists of cluster and field galaxies from $2.0 < z < 2.5$ with K band multi-object slit spectroscopic measurements of their H$alpha$ emission lines. H$alpha$ rotational velocities and gas velocity dispersions are measured using the Heidelberg Emission Line Algorithm (HELA), which compares directly to simulated 3D data-cubes. Using a suite of simulated emission lines, we determine that HELA reliably recovers input S$_{0.5}$ and angular momentum at small offsets, but $V_{2.2}/sigma_g$ values are offset and highly scattered. We examine the role of regular and irregular morphology in the stellar mass kinematic scaling relations, deriving the kinematic measurement S$_{0.5}$, and finding $log(S_{0.5}) = (0.38pm0.07)log(M/M_{odot}-10) + (2.04pm0.03)$ with no significant offset between morphological populations and similar levels of scatter ($sim0.16$ dex). Additionally, we identify a correlation between M$_{star}$ and $V_{2.2}/sigma_g$ for the total sample, showing an increasing level of rotation dominance with increasing M$_{star}$, and a high level of scatter for both regular and irregular galaxies. We estimate the specific angular momenta ($j_{disk}$) of these galaxies and find a slope of $0.36pm0.12$, shallower than predicted without mass-dependent disk growth, but this result is possibly due to measurement uncertainty at M$_{star}$ $<$ 9.5. However, through a K-S test we find irregular galaxies to have marginally higher $j_{disk}$ values than regular galaxies, and high scatter at low masses in both populations.
We perform a kinematic analysis of galaxies at $zsim2$ in the COSMOS legacy field using near-infrared (NIR) spectroscopy from Keck/MOSFIRE as part of the ZFIRE survey. Our sample consists of 75 Ks-band selected star-forming galaxies from the ZFOURGE
We present adaptive optics assisted integral field spectroscopy of 34 star-forming galaxies at $z$ = 0.8-3.3 selected from the HiZELS narrow-band survey. We measure the kinematics of the ionised interstellar medium on $sim$1 kpc scales, and show that
We investigate the relation between stellar mass and specific stellar angular momentum, or `Fall relation, for a sample of 17 isolated, regularly rotating disc galaxies at z=1. All galaxies have a) rotation curves determined from Halpha emission-line
We exploit the deep resolved Halpha kinematic data from the KMOS^3D and SINS/zC-SINF surveys to examine the largely unexplored outer disk kinematics of star-forming galaxies (SFGs) out to the peak of cosmic star formation. Our sample contains 101 SFG
We present an overview and the first data release of ZFIRE, a spectroscopic redshift survey of star-forming galaxies that utilizes the MOSFIRE instrument on Keck-I to study galaxy properties in rich environments at $1.5<z<2.5$. ZFIRE measures accurat