ترغب بنشر مسار تعليمي؟ اضغط هنا

Metal-Depleted Brown Dwarfs

111   0   0.0 ( 0 )
 نشر من قبل Nicolas Lodieu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This chapter reviews our current knowledge of metal-poor ultracool dwarfs with spectral types later than M7. The current census of M, L, and T subdwarfs is explored. The main colour trends of subdwarfs from the optical to the mid-infrared are described and their spectral features presented, which led to a preliminary and tentative spectral classification subject to important changes in the future when more of these metal-poor objects are discovered. Their multiplicity and the determination of their physical parameters (effective temperature, gravity, metallicity, and mass) are discussed. Finally, some suggestions and future guidelines are proposed to foster our knowledge on the oldest and coolest members of our Galaxy.



قيم البحث

اقرأ أيضاً

We presented 15 new T dwarfs that were selected from UKIRT Infrared Deep Sky Survey, Visible and Infrared Survey Telescope for Astronomy, and Wide-field Infrared Survey Explorer surveys, and confirmed with optical to near infrared spectra obtained wi th the Very Large Telescope and the Gran Telescopio Canarias. One of these new T dwarfs is mildly metal-poor with slightly suppressed $K$-band flux. We presented a new X-shooter spectrum of a known benchmark sdT5.5 subdwarf, HIP 73786B. To better understand observational properties of brown dwarfs, we discussed transition zones (mass ranges) with low-rate hydrogen, lithium, and deuterium burning in brown dwarf population. The hydrogen burning transition zone is also the substellar transition zone that separates very low-mass stars, transitional, and degenerate brown dwarfs. Transitional brown dwarfs have been discussed in previous works of the Primeval series. Degenerate brown dwarfs without hydrogen fusion are the majority of brown dwarfs. Metal-poor degenerate brown dwarfs of the Galactic thick disc and halo have become T5+ subdwarfs. We selected 41 T5+ subdwarfs from the literature by their suppressed $K$-band flux. We studied the spectral-type - colour correlations, spectral-type - absolute magnitude correlations, colour-colour plots, and HR diagrams of T5+ subdwarfs, in comparison to these of L-T dwarfs and L subdwarfs. We discussed the T5+ subdwarf discovery capability of deep sky surveys in the 2020s.
We report the discovery of an esdL3 subdwarf, ULAS J020858.62+020657.0, and a usdL4.5 subdwarf, ULAS J230711.01+014447.1. They were identified as L subdwarfs by optical spectra obtained with the Gran Telescopio Canarias, and followed up by optical-to -near-infrared spectroscopy with the Very Large Telescope. We also obtained an optical-to-near-infrared spectrum of a previously known L subdwarf, ULAS J135058.85+081506.8, and reclassified it as a usdL3 subdwarf. These three objects all have typical halo kinematics. They have $T_{rm eff}$ around 2050$-$2250 K, $-$1.8 $leq$ [Fe/H] $leq -$1.5, and mass around 0.0822$-$0.0833 M$_{odot}$, according to model spectral fitting and evolutionary models. These sources are likely halo transitional brown dwarfs with unsteady hydrogen fusion, as their masses are just below the hydrogen-burning minimum mass, which is $sim$ 0.0845 M$_{odot}$ at [Fe/H] = $-$1.6 and $sim$ 0.0855 M$_{odot}$ at [Fe/H] = $-$1.8. Including these, there are now nine objects in the `halo brown dwarf transition zone, which is a `substellar subdwarf gap that spans a wide temperature range within a narrow mass range of the substellar population.
Accurate parallax measurements allow us to determine physical properties of brown dwarfs, and help us to constrain evolutionary and atmospheric models, break the age-mass degeneracy and reveal unresolved binaries. We measured absolute trigonometric parallaxes and proper motions of 6 cool brown dwarfs using background galaxies to establish an absolute reference frame. We derive the absolute J-mag. The six T brown dwarfs in our sample have spectral types between T2.5 and T7.5 and magnitudes in J between 13.9 and 18.0, with photometric distances below 25 pc. The observations were taken in the J-band with the Omega-2000 camera on the 3.5 m telescope at Calar Alto, during a time period of 27 months, between March 2011 and June 2013. The number of epochs varied between 11 and 12 depending on the object. The reduction of the astrometric measurements was carried out with respect to the field stars. The relative parallax and proper motions were transformed into absolute measurements using the background galaxies in our fields. We obtained absolute parallaxes for our six brown dwarfs with a precision between 3 and 6 mas. We compared our results in a color-magnitude diagram with other brown dwarfs with determined parallax and with the BT-Settl 2012 atmospheric models. For four of the six targets we found a good agreement in luminosity with objects of similar spectral types. We obtained an improved accuracy in the parallaxes and proper motions in comparison to previous works. The object 2MASS J11061197+2754225 is more than 1 mag overluminous in all bands pointing to binarity or high order multiplicity.
343 - J.H.J. de Bruijne 2014
Europes Gaia spacecraft will soon embark on its five-year mission to measure the absolute parallaxes of the complete sample of 1,000 million objects down to 20 mag. It is expected that thousands of nearby brown dwarfs will have their astrometry deter mined with sub-milli-arcsecond standard errors. Although this level of accuracy is comparable to the standard errors of the relative parallaxes that are now routinely obtained from the ground for selected, individual objects, the absolute nature of Gaias astrometry, combined with the sample increase from one hundred to several thousand sub-stellar objects with known distances, ensures the uniqueness of Gaias legacy in brown-dwarf science for the coming decade(s). We shortly explore the gain in brown-dwarf science that could be achieved by lowering Gaias faint-end limit from 20 to 21 mag and conclude that two spectral-type sub-classes could be gained in combination with a fourfold increase in the solar-neighbourhood-volume sampled by Gaia and hence in the number of brown dwarfs in the Gaia Catalogue.
SDSS J010448.46+153501.8 has previously been classified as an sdM9.5 subdwarf. However, its very blue $J-K$ colour ($-0.15 pm 0.17$) suggests a much lower metallicity compared to normal sdM9.5 subdwarfs. Here, we re-classify this object as a usdL1.5 subdwarf based on a new optical and near-infrared spectrum obtained with X-shooter on the Very Large Telescope. Spectral fitting with BT-Settl models leads to $T_{rm eff}$ = 2450 $pm$ 150 K, [Fe/H] = $-$2.4 $pm$ 0.2 and log $g$ = 5.5 $pm$ 0.25. We estimate a mass for SDSS J010448.46+153501.8 of 0.086 $pm$ 0.0015 M$_{odot}$ which is just below the hydrogen-burning minimum mass at [Fe/H] = $-$2.4 ($sim$0.088 M$_{odot}$) according to evolutionary models. Our analysis thus shows SDSS J0104+15 to be the most metal-poor and highest mass substellar object known to-date. We found that SDSS J010448.46+153501.8 is joined by another five known L subdwarfs (2MASS J05325346+8246465, 2MASS J06164006$-$6407194, SDSS J125637.16$-$022452.2, ULAS J151913.03$-$000030.0 and 2MASS J16262034+3925190) in a halo brown dwarf transition zone in the $T_{rm eff}-$[Fe/H] plane, which represents a narrow mass range in which unsteady nuclear fusion occurs. This halo brown dwarf transition zone forms a substellar subdwarf gap for mid L to early T types.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا