ﻻ يوجد ملخص باللغة العربية
We study sound in a single-channel one-dimensional quantum liquid. In contrast to classical fluids, instead of a single sound mode we find two modes of density oscillations. The speeds at which these two sound modes propagate are nearly equal, with the difference that scales linearly with the small temperature of the system. The two sound modes emerge as hybrids of the first and second sounds, and combine oscillations of both density and entropy of the liquid.
At low temperatures, elementary excitations of a one-dimensional quantum liquid form a gas that can move as a whole with respect to the center of mass of the system. This internal motion attenuates at exponentially long time scales. As a result, in a
The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics including phenomena such as spin-charge separation. Substantial theoretical efforts have attempted to ex
Domain walls in fractional quantum Hall ferromagnets are gapless helical one-dimensional channels formed at the boundaries of topologically distinct quantum Hall (QH) liquids. Na{i}vely, these helical domain walls (hDWs) constitute two counter-propag
We consider a system of one-dimensional fermions moving in one direction, such as electrons at the edge of a quantum Hall system. At sufficiently long time scales the system is brought to equilibrium by weak interactions between the particles, which
We show that hybrid Dirac and Weyl semimetals can be realized in a three-dimensional Luttinger semimetal with quadratic band touching (QBT). We illustrate this using periodic kicking scheme. In particular, we focus on a momentum-dependent drivings (n