ﻻ يوجد ملخص باللغة العربية
Recent advances in neural autoregressive models have improve the performance of speech synthesis (SS). However, as they lack the ability to model global characteristics of speech (such as speaker individualities or speaking styles), particularly when these characteristics have not been labeled, making neural autoregressive SS systems more expressive is still an open issue. In this paper, we propose to combine VoiceLoop, an autoregressive SS model, with Variational Autoencoder (VAE). This approach, unlike traditional autoregressive SS systems, uses VAE to model the global characteristics explicitly, enabling the expressiveness of the synthesized speech to be controlled in an unsupervised manner. Experiments using the VCTK and Blizzard2012 datasets show the VAE helps VoiceLoop to generate higher quality speech and to control the expressions in its synthesized speech by incorporating global characteristics into the speech generating process.
Prosodic modeling is a core problem in speech synthesis. The key challenge is producing desirable prosody from textual input containing only phonetic information. In this preliminary study, we introduce the concept of style tokens in Tacotron, a rece
In this paper we propose a Sequential Representation Quantization AutoEncoder (SeqRQ-AE) to learn from primarily unpaired audio data and produce sequences of representations very close to phoneme sequences of speech utterances. This is achieved by pr
Text-to-speech synthesis (TTS) has witnessed rapid progress in recent years, where neural methods became capable of producing audios with high naturalness. However, these efforts still suffer from two types of latencies: (a) the {em computational lat
Recent success of the Tacotron speech synthesis architecture and its variants in producing natural sounding multi-speaker synthesized speech has raised the exciting possibility of replacing expensive, manually transcribed, domain-specific, human spee
We describe a sequence-to-sequence neural network which directly generates speech waveforms from text inputs. The architecture extends the Tacotron model by incorporating a normalizing flow into the autoregressive decoder loop. Output waveforms are m