ﻻ يوجد ملخص باللغة العربية
Frustrated Ising magnets host exotic excitations, such as magnetic monopoles in spin ice. The ground state (GS) in this case is characterized by an extensive degeneracy and associated residual entropy going back to the pioneering work by G. Wannier who established large residual entropy of nearly 50%Rln2 per mole spins in a triangular Ising antiferromagnet (TIAF) already in 1950. Here, we endeavor to verify this result experimentally using TmMgGaO4, a novel rare-earth-based frustrated antiferromagnet with Ising spins arranged on a perfect triangular lattice. Contrary to theoretical expectations, we find almost no residual entropy and ascribe this result to the presence of a weak second-neighbor coupling J2zz ~ 0.09J1zz that lifts the GS degeneracy and gives rise to several ordered states, the stripe order, 1/3-plateau, and 1/2-plateau. TmMgGaO4 gives experimental access to these novel phases of Ising spins on the triangular lattice.
We report a comprehensive investigation of the magnetism of the $S$ = 3/2 triangular-lattice antiferromagnet, $alpha$-CrOOH(D) (delafossites green-grey powder). The nearly Heisenberg antiferromagnetic Hamiltonian ($J_1$ $sim$ 23.5 K) with a weak sing
Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the success
The $S$ = $frac{1}{2}$ kagome Heisenberg antiferromagnet (KHA) is a leading model hosting a quantum spin liquid (QSL), but the exact nature of its ground state remains a key issue under debate. In the previously well-studied candidate materials, magn
Water ice and spin ice are important model systems in which theory can directly account for zero point entropy associated with quenched configurational disorder. Spin ice differs from water ice in the important respect that its fundamental constituen
We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO$_4$ to be spin glass, including no long-range magnetic order, prominent broad excitation continua, and absence of magnetic thermal conductivity