ﻻ يوجد ملخص باللغة العربية
For a binary protostellar outflow system in which its members are located so close to each other (the separation being smaller than the addition of the widths of the flows) and with large opening angles, the collision seems unavoidable regardless of the orientation of the outflows. This is in contrast to the current observational evidence of just a few regions with indications of colliding outflows. Here, using sensitive observations of the Atacama Large Millimeter/Submillimeter Array (ALMA), we report resolved images of carbon monoxide (CO) towards the binary flows associated with the BHR71 protostellar system. These images reveal for the first time solid evidence that their flows are partially colliding, increasing the brightness of the CO, the dispersion of the velocities in the interaction zone, and changing part of the orientation in one of the flows. Additionally, this impact opened the possibility of knowing the 3D geometry of the system, revealing that one of its components (IRS2) should be closer to us.
The formation of stars is usually accompanied by the launching of protostellar outflows. Observations with the Atacama Large Millimetre/sub-millimetre Array (ALMA) will soon revolutionalise our understanding of the morphologies and kinematics of thes
We present Atacama Large Millimeter Array (ALMA) Band 6 observations at 14-20 au spatial resolution of the disk and CO(2-1) outflow around the Class I protostar DG Tau B in Taurus. The disk is very large, both in dust continuum (R$_{rm eff,95%}$=174
With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion-ejection process in the star formation, a juxtaposition of the morphological and kinematic properties
We present results of 1.3 mm dust polarization observations toward 16 nearby, low-mass protostars, mapped with ~2.5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of ~1000 AU are not tightly aligned with ou
A search of the first Data Release of the VISTA Variables in the Via Lactea (VVV) Survey discovered the exceptionally red transient VVV-WIT-01 ($H-K_s=5.2$). It peaked before March 2010, then faded by $sim$9.5 mag over the following two years. The 1.