ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Scaling Blockchain Systems via Sharding

147   0   0.0 ( 0 )
 نشر من قبل Hung Dang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing blockchain systems scale poorly because of their distributed consensus protocols. Current attempts at improving blockchain scalability are limited to cryptocurrency. Scaling blockchain systems under general workloads (i.e., non-cryptocurrency applications) remains an open question. In this work, we take a principled approach to apply sharding, which is a well-studied and proven technique to scale out databases, to blockchain systems in order to improve their transaction throughput at scale. This is challenging, however, due to the fundamental difference in failure models between databases and blockchain. To achieve our goal, we first enhance the performance of Byzantine consensus protocols, by doing so we improve individual shards throughput. Next, we design an efficient shard formation protocol that leverages a trusted random beacon to securely assign nodes into shards. We rely on trusted hardware, namely Intel SGX, to achieve high performance for both consensus and shard formation protocol. Third, we design a general distributed transaction protocol that ensures safety and liveness even when transaction coordinators are malicious. Finally, we conduct an extensive evaluation of our design both on a local cluster and on Google Cloud Platform. The results show that our consensus and shard formation protocols outperform state-of-the-art solutions at scale. More importantly, our sharded blockchain reaches a high throughput that can handle Visa-level workloads, and is the largest ever reported in a realistic environment.



قيم البحث

اقرأ أيضاً

Cryptocurrencies, implemented with blockchain protocols, promise to become a global payment system if they can overcome performance limitations. Rapidly advancing architectures improve on latency and throughput, but most require all participating ser vers to process all transactions. Several recent works propose to shard the system, such that each machine would only process a subset of the transactions. However, we identify a denial-of-service attack that is exposed by these solutions - an attacker can generate transactions that would overload a single shard, thus delaying processing in the entire system. Moreover, we show that in common scenarios, these protocols require most node operators to process almost all blockchain transactions. We present Ostraka, a blockchain node architecture that shards (parallelizes) the nodes themselves. We prove that replacing a unified node with an Ostraka node does not affect the security of the underlying consensus mechanism. We evaluate analytically and experimentally block propagation and processing in various settings. Ostraka allows nodes in the network to scale, without costly coordination. In our experiments, Ostraka nodes transaction processing rate grows linearly with the addition of resources.
166 - Bin Cao , Zixin Wang , Long Zhang 2021
In the past decade, blockchain has shown a promising vision greatly to build the trust without any powerful third party in a secure, decentralized and salable manner. However, due to the wide application and future development from cryptocurrency to Internet of Things, blockchain is an extremely complex system enabling integration with mathematics, finance, computer science, communication and network engineering, etc. As a result, it is a challenge for engineer, expert and researcher to fully understand the blockchain process in a systematic view from top to down. First, this article introduces how blockchain works, the research activity and challenge, and illustrates the roadmap involving the classic methodology with typical blockchain use cases and topics. Second, in blockchain system, how to adopt stochastic process, game theory, optimization, machine learning and cryptography to study blockchain running process and design blockchain protocol/algorithm are discussed in details. Moreover, the advantage and limitation using these methods are also summarized as the guide of future work to further considered. Finally, some remaining problems from technical, commercial and political views are discussed as the open issues. The main findings of this article will provide an overview in a methodology perspective to study theoretical model for blockchain fundamentals understanding, design network service for blockchain-based mechanisms and algorithms, as well as apply blockchain for Internet of Things, etc.
Many blockchain consensus protocols have been proposed recently to scale the throughput of a blockchain with available bandwidth. However, these protocols are becoming increasingly complex, making it more and more difficult to produce proofs of their security guarantees. We propose a novel permissionless blockchain protocol OHIE which explicitly aims for simplicity. OHIE composes as many parallel instances of Bitcoins original (and simple) backbone protocol as needed to achieve excellent throughput. We formally prove the safety and liveness properties of OHIE. We demonstrate its performance with a prototype implementation and large-scale experiments with up to 50,000 nodes. In our experiments, OHIE achieves linear scaling with available bandwidth, providing about 4-10 Mbps transaction throughput (under 8-20 Mbps per-node available bandwidth configurations) and at least about 20x better decentralization over prior works.
135 - Xiangyu Wang , Ting Yang , Yu Wang 2020
Blockchain is an incrementally updated ledger maintained by distributed nodes rather than centralized organizations. The current blockchain technology faces scalability issues, which include two aspects: low transaction throughput and high storage ca pacity costs. This paper studies the blockchain structure based on state sharding technology, and mainly solves the problem of non-scalability of block chain storage. This paper designs and implements the blockchain state sharding scheme, proposes a specific state sharding data structure and algorithm implementation, and realizes a complete blockchain structure so that the blockchain has the advantages of high throughput, processing a large number of transactions and saving storage costs. Experimental results show that a blockchain network with more than 100,000 nodes can be divided into 1024 shards. A blockchain network with this structure can process 500,000 transactions in about 5 seconds. If the consensus time of the blockchain is about 10 seconds, and the block generation time of the blockchain system of the sharding mechanism is 15 seconds, the transaction throughput can reach 33,000 tx/sec. Experimental results show that the throughput of the proposed protocol increases with the increase of the network node size. This confirms the scalability of the blockchain structure based on sharding technology.
Sharding is the prevalent approach to breaking the trilemma of simultaneously achieving decentralization, security, and scalability in traditional blockchain systems, which are implemented as replicated state machines relying on atomic broadcast for consensus on an immutable chain of valid transactions. Sharding is to be understood broadly as techniques for dynamically partitioning nodes in a blockchain system into subsets (shards) that perform storage, communication, and computation tasks without fine-grained synchronization with each other. Despite much recent research on sharding blockchains, much remains to be explored in the design space of these systems. Towards that aim, we conduct a systematic analysis of existing sharding blockchain systems and derive a conceptual decomposition of their architecture into functional components and the underlying assumptions about system models and attackers they are built on. The functional components identified are node selection, epoch randomness, node assignment, intra-shard consensus, cross-shard transaction processing, shard reconfiguration, and motivation mechanism. We describe interfaces, functionality, and properties of each component and show how they compose into a sharding blockchain system. For each component, we systematically review existing approaches, identify potential and open problems, and propose future research directions. We focus on potential security attacks and performance problems, including system throughput and latency concerns such as confirmation delays. We believe our modular architectural decomposition and in-depth analysis of each component, based on a comprehensive literature study, provides a systematic basis for conceptualizing state-of-the-art sharding blockchain systems, proving or improving security and performance properties of components, and developing new sharding blockchain system designs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا