ﻻ يوجد ملخص باللغة العربية
We present three-dimensional calculations of spherically symmetric Bondi accretion onto a stationary supermassive black hole (SMBH) of mass $10^{8}$ $M_{odot}$ within a radial range of $0.02-10$ pc, using a modified version of the smoothed particle hydrodynamics (SPH) gad sp code, which ensures approximate first-order consistency (i.e., second-order accuracy) for the particle approximation. First-order consistency is restored by allowing the number of neighbours, $n_{rm neigh}$, and the smoothing length, $h$, to vary with the total number of particles, $N$, such that the asymptotic limits $n_{rm neigh}toinfty$ and $hto 0$ hold as $Ntoinfty$. The ability of the method to reproduce the isothermal ($gamma =1$) and adiabatic ($gamma =5/3$) Bondi accretion is investigated with increased spatial resolution. In particular, for the isothermal models the numerical radial profiles closely match the Bondi solution, except near the accretor, where the density and radial velocity are slightly underestimated. However, as $n_{rm neigh}$ is increased and $h$ is decreased, the calculations approach first-order consistency and the deviations from the Bondi solution decrease. The density and radial velocity profiles for the adiabatic models are qualitatively similar to those for the isothermal Bondi accretion. Steady-state Bondi accretion is reproduced by the highly resolved consistent models with a percent relative error of $lesssim 1$% for $gamma =1$ and $sim 9$% for $gamma =5/3$, with the adiabatic accretion taking longer than the isothermal case to reach steady flow. The performance of the method is assessed by comparing the results with those obtained using the standard Gadget and the Gizmo codes.
In this paper, we present the classical Bondi accretion theory for the case of non-isothermal accretion processes onto a supermassive black hole (SMBH), including the effects of X-ray heating and the radiation force due to electron scattering and spe
Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely un
We study low-density axisymmetric accretion flows onto black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the $alpha$-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disk w
Gas undergoing Bondi accretion onto a supermassive black hole (SMBH) becomes hotter toward smaller radii. We searched for this signature with a Chandra observation of the hot gas in NGC 3115, which optical observations show has a very massive SMBH. O
The fully analytical solution for isothermal Bondi accretion on a black hole (MBH) at the center of two-component Jaffe (1983) galaxy models is presented. In a previous work we provided the analytical expressions for the critical accretion parameter