ﻻ يوجد ملخص باللغة العربية
With the objective of integrating single clean, as-grown carbon nanotubes into complex circuits, we have developed a technique to grow nanotubes directly on commercially available quartz tuning forks using a high temperature CVD process. Multiple straight and aligned nanotubes bridge the >100um gap between the two tips. The nanotubes are then lowered onto contact electrodes, electronically characterized in situ, and subsequently cut loose from the tuning fork using a high current. First quantum transport measurements of the resulting devices at cryogenic temperatures display Coulomb blockade characteristics.
Quartz tuning forks are high-quality mechanical oscillators widely used in low temperature physics as viscometers, thermometers and pressure sensors. We demonstrate that a fork placed in liquid helium near the surface of solid helium is very sensitiv
Commercial quartz oscillators of the tuning-fork type with a resonant frequency of ~32 kHz have been investigated in helium liquids. The oscillators are found to have at best Q values in the range 10^5-10^6, when measured in vacuum below 1.5 K. Howev
Recently nanomechanical devices composed of a long stationary inner carbon nanotube and a shorter, slowly-rotating outer tube have been fabricated. In this Letter, we study the possibility of using such devices as adiabatic quantum pumps. Using the B
In this Letter we demonstrate that Permalloy (Py), a widely used Ni/Fe alloy, forms contacts to carbon nanotubes (CNTs) that meet the requirements for the injection and detection of spin-polarized currents in carbon-based spintronic devices. We estab
We investigate charge pumping in carbon nanotube quantum dots driven by the electric field of a surface acoustic wave. We find that at small driving amplitudes, the pumped current reverses polarity as the conductance is tuned through a Coulomb blocka