ترغب بنشر مسار تعليمي؟ اضغط هنا

FastDeRain: A Novel Video Rain Streak Removal Method Using Directional Gradient Priors

331   0   0.0 ( 0 )
 نشر من قبل Tai-Xiang Jiang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Rain streak removal is an important issue in outdoor vision systems and has recently been investigated extensively. In this paper, we propose a novel video rain streak removal approach FastDeRain, which fully considers the discriminative characteristics of rain streaks and the clean video in the gradient domain. Specifically, on the one hand, rain streaks are sparse and smooth along the direction of the raindrops, whereas on the other hand, clean videos exhibit piecewise smoothness along the rain-perpendicular direction and continuity along the temporal direction. Theses smoothness and continuity results in the sparse distribution in the different directional gradient domain, respectively. Thus, we minimize 1) the $ell_1$ norm to enhance the sparsity of the underlying rain streaks, 2) two $ell_1$ norm of unidirectional Total Variation (TV) regularizers to guarantee the anisotropic spatial smoothness, and 3) an $ell_1$ norm of the time-directional difference operator to characterize the temporal continuity. A split augmented Lagrangian shrinkage algorithm (SALSA) based algorithm is designed to solve the proposed minimization model. Experiments conducted on synthetic and real data demonstrate the effectiveness and efficiency of the proposed method. According to comprehensive quantitative performance measures, our approach outperforms other state-of-the-art methods especially on account of the running time. The code of FastDeRain can be downloaded at https://github.com/TaiXiangJiang/FastDeRain.



قيم البحث

اقرأ أيضاً

Rain streak removal is an important issue and has recently been investigated extensively. Existing methods, especially the newly emerged deep learning methods, could remove the rain streaks well in many cases. However the essential factor in the gene rative procedure of the rain streaks, i.e., the motion blur, which leads to the line pattern appearances, were neglected by the deep learning rain streaks approaches and this resulted in over-derain or under-derain results. In this paper, we propose a novel rain streak removal approach using a kernel guided convolutional neural network (KGCNN), achieving the state-of-the-art performance with simple network architectures. We first model the rain streak interference with its motion blur mechanism. Then, our framework starts with learning the motion blur kernel, which is determined by two factors including angle and length, by a plain neural network, denoted as parameter net, from a patch of the texture component. Then, after a dimensionality stretching operation, the learned motion blur kernel is stretched into a degradation map with the same spatial size as the rainy patch. The stretched degradation map together with the texture patch is subsequently input into a derain convolutional network, which is a typical ResNet architecture and trained to output the rain streaks with the guidance of the learned motion blur kernel. Experiments conducted on extensive synthetic and real data demonstrate the effectiveness of the proposed method, which preserves the texture and the contrast while removing the rain streaks.
Rain streaks and rain drops are two natural phenomena, which degrade image capture in different ways. Currently, most existing deep deraining networks take them as two distinct problems and individually address one, and thus cannot deal adequately wi th both simultaneously. To address this, we propose a Dual Attention-in-Attention Model (DAiAM) which includes two DAMs for removing both rain streaks and raindrops. Inside the DAM, there are two attentive maps - each of which attends to the heavy and light rainy regions, respectively, to guide the deraining process differently for applicable regions. In addition, to further refine the result, a Differential-driven Dual Attention-in-Attention Model (D-DAiAM) is proposed with a heavy-to-light scheme to remove rain via addressing the unsatisfying deraining regions. Extensive experiments on one public raindrop dataset, one public rain streak and our synthesized joint rain streak and raindrop (JRSRD) dataset have demonstrated that the proposed method not only is capable of removing rain streaks and raindrops simultaneously, but also achieves the state-of-the-art performance on both tasks.
Video rain/snow removal from surveillance videos is an important task in the computer vision community since rain/snow existed in videos can severely degenerate the performance of many surveillance system. Various methods have been investigated exten sively, but most only consider consistent rain/snow under stable background scenes. Rain/snow captured from practical surveillance camera, however, is always highly dynamic in time with the background scene transformed occasionally. To this issue, this paper proposes a novel rain/snow removal approach, which fully considers dynamic statistics of both rain/snow and background scenes taken from a video sequence. Specifically, the rain/snow is encoded as an online multi-scale convolutional sparse coding (OMS-CSC) model, which not only finely delivers the sparse scattering and multi-scale shapes of real rain/snow, but also well encodes their temporally dynamic configurations by real-time ameliorated parameters in the model. Furthermore, a transformation operator imposed on the background scenes is further embedded into the proposed model, which finely conveys the dynamic background transformations, such as rotations, scalings and distortions, inevitably existed in a real video sequence. The approach so constructed can naturally better adapt to the dynamic rain/snow as well as background changes, and also suitable to deal with the streaming video attributed its online learning mode. The proposed model is formulated in a concise maximum a posterior (MAP) framework and is readily solved by the ADMM algorithm. Compared with the state-of-the-art online and offline video rain/snow removal methods, the proposed method achieves better performance on synthetic and real videos datasets both visually and quantitatively. Specifically, our method can be implemented in relatively high efficiency, showing its potential to real-time video rain/snow removal.
161 - Hong Wang , Yichen Wu , Minghan Li 2019
Rain streaks might severely degenerate the performance of video/image processing tasks. The investigations on rain removal from video or a single image has thus been attracting much research attention in the field of computer vision and pattern recog nition, and various methods have been proposed against this task in the recent years. However, there is still not a comprehensive survey paper to summarize current rain removal methods and fairly compare their generalization performance, and especially, still not a off-the-shelf toolkit to accumulate recent representative methods for easy performance comparison and capability evaluation. Aiming at this meaningful task, in this study we present a comprehensive review for current rain removal methods for video and a single image. Specifically, these methods are categorized into model-driven and data-driven approaches, and more elaborate branches of each approach are further introduced. Intrinsic capabilities, especially generalization, of representative state-of-the-art methods of each approach have been evaluated and analyzed by experiments implemented on synthetic and real data both visually and quantitatively. Furthermore, we release a comprehensive repository, including direct links to 74 rain removal papers, source codes of 9 methods for video rain removal and 20 ones for single image rain removal, 19 related project pages, 6 synthetic datasets and 4 real ones, and 4 commonly used image quality metrics, to facilitate reproduction and performance comparison of current existing methods for general users. Some limitations and research issues worthy to be further investigated have also been discussed for future research of this direction.
We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corresponding to real-world rainy images, we synthesize images with rain for training. In contrast to other common strategies that increase depth or breadth of the network, we use image processing domain knowledge to modify the objective function and improve deraining with a modestly-sized CNN. Specifically, we train our DerainNet on the detail (high-pass) layer rather than in the image domain. Though DerainNet is trained on synthetic data, we find that the learned network translates very effectively to real-world images for testing. Moreover, we augment the CNN framework with image enhancement to improve the visual results. Compared with state-of-the-art single image de-raining methods, our method has improved rain removal and much faster computation time after network training.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا