ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical Impedance Models for Very Short Bunches

65   0   0.0 ( 0 )
 نشر من قبل Igor Zagorodnov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Igor Zagorodnov




اسأل ChatGPT حول البحث

We discuss several analytical models for impedances of very short bunches. The approximate analytical models are compared with direct solution of Maxwells equations.



قيم البحث

اقرأ أيضاً

In previous work [1] general expressions, valid for arbitrary bunch lengths, were derived for the wakefields of corrugated structures with flat geometry, such as is used in the RadiaBeam/LCLS dechirper. However, the bunch at the end of linac-based X- ray FELs--like the LCLS--is extremely short, and for short bunches the wakes can be considerably simplified. In this work, we first derive analytical approximations to the short-range wakes. These are generalized wakes, in the sense that their validity is not limited to a small neighborhood of the symmetry axis, but rather extends to arbitrary transverse offsets of driving and test particles. The validity of these short-bunch wakes holds not only for the corrugated structure, but rather for any flat structure whose beam-cavity interaction can be described by a surface impedance. We use these wakes to obtain, for a short bunch passing through a dechirper: estimates of the energy loss as function of gap, the transverse kick as function of beam offset, the slice energy spread increase, and the emittance growth. In the Appendix, a more accurate derivation--than is found in [1]--of the arbitrary bunch length wakes is performed; we find full agreement with the earlier results, provided the bunches are short compared to the dechirper gap, which is normally the regime of interest. [1] K. Bane and G. Stupakov, Phys. Rev. ST Accel. Beams 18, 034401(2015).
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to t he situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked agains numerical simulations with the CSRZ computer code.
One of the key-issues to increase the luminosity in the next generation particle factories is to reduce the bunch length at the interaction point (IP) as much as possible. This will allow reducing proportionally the transverse beta functions at the I P and increasing the luminosity by the same factor. The strong RF focusing consists in obtaining short bunches by substantially increasing the lattice momentum compaction and the RF gradient. In this regime the bunch length is modulated along the ring and could be minimized at the IP. If the principal impedance generating elements of the ring are located where the bunch is long (in the RF cavities region) it is possible to avoid microwave instability and excessive bunch lengthening due to the potential well distortion.
We develop analytical models of the longitudinal and transverse wakes, on and off axis for realistic structures, and then compare them with numerical calculations, and generally find good agreement. These analytical first order formulas approximate t he droop at the origin of the longitudinal wake and of the slope of the transverse wakes; they represent an improvement in accuracy over earlier, zeroth order formulas. In example calculations for the RadiaBeam/LCLS dechirper using typical parameters, we find a 16% droop in the energy chirp at the bunch tail compared to simpler calculations. With the beam moved to 200~$mu$m from one jaw in one dechiper section, one can achieve a 3~MV transverse kick differential over a 30~$mu$m length.
Plasma wake lens in which all short relativistic electron bunches of sequence are focused identically and uniformly is studied analytically and by numerical simulation. For two types of lenses necessary parameters of focused sequence of relativistic electron bunches are formulated. Verification of these parameters is performed by numerical simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا