ترغب بنشر مسار تعليمي؟ اضغط هنا

A Dual Approach to Scalable Verification of Deep Networks

127   0   0.0 ( 0 )
 نشر من قبل Krishnamurthy Dvijotham
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial perturbations, for example). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime i.e. it can be stopped at any time and a valid bound on the maximum violation can be obtained. We develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of our general verification approach on a variety of verification tasks.



قيم البحث

اقرأ أيضاً

Despite the functional success of deep neural networks (DNNs), their trustworthiness remains a crucial open challenge. To address this challenge, both testing and verification techniques have been proposed. But these existing techniques provide eithe r scalability to large networks or formal guarantees, not both. In this paper, we propose a scalable quantitative verification framework for deep neural networks, i.e., a test-driven approach that comes with formal guarantees that a desired probabilistic property is satisfied. Our technique performs enough tests until soundness of a formal probabilistic property can be proven. It can be used to certify properties of both deterministic and randomized DNNs. We implement our approach in a tool called PROVERO and apply it in the context of certifying adversarial robustness of DNNs. In this context, we first show a new attack-agnostic measure of robustness which offers an alternative to purely attack-based methodology of evaluating robustness being reported today. Second, PROVERO provides certificates of robustness for large DNNs, where existing state-of-the-art verification tools fail to produce conclusive results. Our work paves the way forward for verifying properties of distributions captured by real-world deep neural networks, with provable guarantees, even where testers only have black-box access to the neural network.
Analyzing the worst-case performance of deep neural networks against input perturbations amounts to solving a large-scale non-convex optimization problem, for which several past works have proposed convex relaxations as a promising alternative. Howev er, even for reasonably-sized neural networks, these relaxations are not tractable, and so must be replaced by even weaker relaxations in practice. In this work, we propose a novel operator splitting method that can directly solve a convex relaxation of the problem to high accuracy, by splitting it into smaller sub-problems that often have analytical solutions. The method is modular and scales to problem instances that were previously impossible to solve exactly due to their size. Furthermore, the solver operations are amenable to fast parallelization with GPU acceleration. We demonstrate our method in obtaining tighter bounds on the worst-case performance of large convolutional networks in image classification and reinforcement learning settings.
Graph generative models have been extensively studied in the data mining literature. While traditional techniques are based on generating structures that adhere to a pre-decided distribution, recent techniques have shifted towards learning this distr ibution directly from the data. While learning-based approaches have imparted significant improvement in quality, some limitations remain to be addressed. First, learning graph distributions introduces additional computational overhead, which limits their scalability to large graph databases. Second, many techniques only learn the structure and do not address the need to also learn node and edge labels, which encode important semantic information and influence the structure itself. Third, existing techniques often incorporate domain-specific rules and lack generalizability. Fourth, the experimentation of existing techniques is not comprehensive enough due to either using weak evaluation metrics or focusing primarily on synthetic or small datasets. In this work, we develop a domain-agnostic technique called GraphGen to overcome all of these limitations. GraphGen converts graphs to sequences using minimum DFS codes. Minimum DFS codes are canonical labels and capture the graph structure precisely along with the label information. The complex joint distributions between structure and semantic labels are learned through a novel LSTM architecture. Extensive experiments on million-sized, real graph datasets show GraphGen to be 4 times faster on average than state-of-the-art techniques while being significantly better in quality across a comprehensive set of 11 different metrics. Our code is released at https://github.com/idea-iitd/graphgen.
Score matching is a popular method for estimating unnormalized statistical models. However, it has been so far limited to simple, shallow models or low-dimensional data, due to the difficulty of computing the Hessian of log-density functions. We show this difficulty can be mitigated by projecting the scores onto random vectors before comparing them. This objective, called sliced score matching, only involves Hessian-vector products, which can be easily implemented using reverse-mode automatic differentiation. Therefore, sliced score matching is amenable to more complex models and higher dimensional data compared to score matching. Theoretically, we prove the consistency and asymptotic normality of sliced score matching estimators. Moreover, we demonstrate that sliced score matching can be used to learn deep score estimators for implicit distributions. In our experiments, we show sliced score matching can learn deep energy-based models effectively, and can produce accurate score estimates for applications such as variational inference with implicit distributions and training Wasserstein Auto-Encoders.
95 - Yulin Liu , Mark Hansen 2018
Reliable 4D aircraft trajectory prediction, whether in a real-time setting or for analysis of counterfactuals, is important to the efficiency of the aviation system. Toward this end, we first propose a highly generalizable efficient tree-based matchi ng algorithm to construct image-like feature maps from high-fidelity meteorological datasets - wind, temperature and convective weather. We then model the track points on trajectories as conditional Gaussian mixtures with parameters to be learned from our proposed deep generative model, which is an end-to-end convolutional recurrent neural network that consists of a long short-term memory (LSTM) encoder network and a mixture density LSTM decoder network. The encoder network embeds last-filed flight plan information into fixed-size hidden state variables and feeds the decoder network, which further learns the spatiotemporal correlations from the historical flight tracks and outputs the parameters of Gaussian mixtures. Convolutional layers are integrated into the pipeline to learn representations from the high-dimension weather features. During the inference process, beam search, adaptive Kalman filter, and Rauch-Tung-Striebel smoother algorithms are used to prune the variance of generated trajectories.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا