ﻻ يوجد ملخص باللغة العربية
In real-world Bayesian inference applications, prior assumptions regarding the parameters of interest may be unrepresentative of their actual values for a given dataset. In particular, if the likelihood is concentrated far out in the wings of the assumed prior distribution, this can lead to extremely inefficient exploration of the resulting posterior by nested sampling algorithms, with unnecessarily high associated computational costs. Simple solutions such as broadening the prior range in such cases might not be appropriate or possible in real-world applications, for example when one wishes to assume a single standardised prior across the analysis of a large number of datasets for which the true values of the parameters of interest may vary. This work therefore introduces a posterior repartitioning (PR) method for nested sampling algorithms, which addresses the problem by redefining the likelihood and prior while keeping their product fixed, so that the posterior inferences and evidence estimates remain unchanged but the efficiency of the nested sampling process is significantly increased. Numerical results show that the PR method provides a simple yet powerful refinement for nested sampling algorithms to address the issue of unrepresentative priors.
Nested sampling (NS) computes parameter posterior distributions and makes Bayesian model comparison computationally feasible. Its strengths are the unsupervised navigation of complex, potentially multi-modal posteriors until a well-defined terminatio
It was recently emphasised by Riley (2019); Schittenhelm & Wacker (2020) that that in the presence of plateaus in the likelihood function nested sampling (NS) produces faulty estimates of the evidence and posterior densities. After informally explain
The Shannon entropy, and related quantities such as mutual information, can be used to quantify uncertainty and relevance. However, in practice, it can be difficult to compute these quantities for arbitrary probability distributions, particularly if
Metropolis nested sampling evolves a Markov chain from a current livepoint and accepts new points along the chain according to a version of the Metropolis acceptance ratio modified to satisfy the likelihood constraint, characteristic of nested sampli
Nested sampling (NS) is an invaluable tool in data analysis in modern astrophysics, cosmology, gravitational wave astronomy and particle physics. We identify a previously unused property of NS related to order statistics: the insertion indexes of new