ﻻ يوجد ملخص باللغة العربية
We present measurements of the dynamical structure factor $S(q,omega)$ of an interacting one-dimensional (1D) Fermi gas for small excitation energies. We use the two lowest hyperfine levels of the $^6$Li atom to form a pseudo-spin-1/2 system whose s-wave interactions are tunable via a Feshbach resonance. The atoms are confined to 1D by a two-dimensional optical lattice. Bragg spectroscopy is used to measure a response of the gas to density (charge) mode excitations at a momentum $q$ and frequency $omega$. The spectrum is obtained by varying $omega$, while the angle between two laser beams determines $q$, which is fixed to be less than the Fermi momentum $k_textrm{F}$. The measurements agree well with Tomonaga-Luttinger theory.
A proposed paradigm for out-of-equilibrium quantum systems is that an analogue of quantum phase transitions exists between parameter regimes of qualitatively distinct time-dependent behavior. Here, we present evidence of such a transition between dyn
Dominating finite-range interactions in many-body systems can lead to intriguing self-ordered phases of matter. Well known examples are crystalline solids or Coulomb crystals in ion traps. In those systems, crystallization proceeds via a classical tr
We study an impurity atom trapped by an anharmonic potential, immersed within a cold atomic Fermi gas with attractive interactions that realizes the crossover from a Bardeen-Cooper-Schrieffer (BCS) superfluid to a Bose-Einstein condensate (BEC). Cons
We analyze the temporal response of the fluorescence light that is emitted from a dense gas of cold atoms driven by a laser. When the average interatomic distance is smaller than the wavelength of the photons scattered by the atoms, the system exhibi
The exact solution of the 1D interacting mixed Bose-Fermi gas is used to calculate ground-state properties both for finite systems and in the thermodynamic limit. The quasimomentum distribution, ground-state energy and generalized velocities are obta