ﻻ يوجد ملخص باللغة العربية
The protonated form of CO2, HOCO+, is assumed to be an indirect tracer of CO2 in the millimeter/submillimeter regime since CO2 lacks a permanent dipole moment. Here, we report the detection of two rotational emission lines (4 0,4-3 0,3) and (5 0,5-4 0,4) of HOCO+ in IRAS 16293-2422. For our observations, we have used EMIR heterodyne 3 mm receiver of the IRAM 30m telescope. The observed abundance of HOCO+ is compared with the simulations using the 3-phase NAUTILUS chemical model. Implications of the measured abundances of HOCO+ to study the chemistry of CO2 ices using JWST-MIRI and NIRSpec are discussed as well.
The low mass protostar IRAS 16293$-$2422 is a well-known young stellar system that is observed in the L1689N molecular cloud in the constellation of Ophiuchus. In the interstellar medium and solar system bodies, water is a necessary species for the f
This paper was withdrawed from the ApJ after the comments from the referee, please be carefully.
Methyl cyanide (CH3CN) and propyne (CH3CCH) are two molecules commonly used as gas thermometers for interstellar gas. They are detected in several astrophysical environments and in particular towards protostars. Using data of the low-mass protostar I
(Abridged) With the SMA we have made high angular-resolution (~1 = 160 AU) observations of the protobinary system IRAS 16293-2422 in the J = 4-3 lines of HCN and HC^15N, and in the continuum at 354.5 GHz. The HCN (4-3) line was also observed using th
The Class 0 protostar IRAS 16293$-$2422 Source A is known to be a binary system (A1 and A2) or even a multiple system, which processes a complex outflow structure. We have observed this source in the C$^{34}$S, SO, and OCS lines at 3.1 mm with the At