ﻻ يوجد ملخص باللغة العربية
The observed multi-GeV gamma-ray emission from the solar disk --- sourced by hadronic cosmic rays interacting with gas, and affected by complex magnetic fields --- is not understood. Utilizing an improved analysis of the Fermi-LAT data that includes the first resolved imaging of the disk, we find strong evidence that this emission is produced by two separate mechanisms. Between 2010-2017 (the rise to and fall from solar maximum), the gamma-ray emission is dominated by a polar component. Between 2008-2009 (solar minimum) this component remains present, but the total emission is instead dominated by a new equatorial component with a brighter flux and harder spectrum. Most strikingly, although 6 gamma rays above 100 GeV are observed during the 1.4 years of solar minimum, none are observed during the next 7.8 years. These features, along with a 30-50 GeV spectral dip which will be discussed in a companion paper, were not anticipated by theory. To understand the underlying physics, Fermi and HAWC observations of the imminent Cycle 25 solar minimum are crucial.
We report the detection of two new gamma-ray sources in the Fermi-LAT sky (Pass 8) at energies higher than 20 GeV, and confirmed at lower energies, using a source detection tool based on the Minimum Spanning Tree algorithm. One of these sources, at a
The solar disk is a bright source of multi-GeV gamma rays, due to the interactions of hadronic cosmic rays with the solar atmosphere. However, the underlying production mechanism is not understood, except that its efficiency must be greatly enhanced
Gamma-ray bursts (GRBs) are brief flashes of gamma rays, considered to be the most energetic explosive phenomena in the Universe. The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much long
New bounds on decaying Dark Matter are derived from the gamma-ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent c
The solar disk is among the brightest gamma-ray sources in the sky. It is also among the most mysterious. No existing model fully explains the luminosity, spectrum, time variability, and morphology of its emission. We perform the first analysis of so