ترغب بنشر مسار تعليمي؟ اضغط هنا

Co-occurrence simplicial complexes in mathematics: identifying the holes of knowledge

272   0   0.0 ( 0 )
 نشر من قبل Daniele Cassese
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

In the last years complex networks tools contributed to provide insights on the structure of research, through the study of collaboration, citation and co-occurrence networks. The network approach focuses on pairwise relationships, often compressing multidimensional data structures and inevitably losing information. In this paper we propose for the first time a simplicial complex approach to word co-occurrences, providing a natural framework for the study of higher-order relations in the space of scientific knowledge. Using topological methods we explore the conceptual landscape of mathematical research, focusing on homological holes, regions with low connectivity in the simplicial structure. We find that homological holes are ubiquitous, which suggests that they capture some essential feature of research practice in mathematics. Holes die when a subset of their concepts appear in the same article, hence their death may be a sign of the creation of new knowledge, as we show with some examples. We find a positive relation between the dimension of a hole and the time it takes to be closed: larger holes may represent potential for important advances in the field because they separate conceptually distant areas. We also show that authors conceptual entropy is positively related with their contribution to homological holes, suggesting that polymaths tend to be on the frontier of research.



قيم البحث

اقرأ أيضاً

150 - Z. Li , Z. Deng , Z. Han 2021
The propagation of information in social, biological and technological systems represents a crucial component in their dynamic behavior. When limited to pairwise interactions, a rather firm grip is available on the relevant parameters and critical tr ansitions of these spreading processes, most notably the pandemic transition, which indicates the conditions for the spread to cover a large fraction of the network. The challenge is that, in many relevant applications, the spread is driven by higher order relationships, in which several components undergo a group interaction. To address this, we analyze the spreading dynamics in a simplicial complex environment, designed to capture the coexistence of interactions of different orders. We find that, while pairwise interactions play a key role in the initial stages of the spread, once it gains coverage, higher order simplices take over and drive the contagion dynamics. The result is a distinctive spreading phase diagram, exhibiting a discontinuous pandemic transition, and hence offering a qualitative departure from the traditional network spreading dynamics.
Simplicial complexes are a versatile and convenient paradigm on which to build all the tools and techniques of the logic of knowledge, on the assumption that initial epistemic models can be described in a distributed fashion. Thus, we can define: kno wledge, belief, bisimulation, the group notions of mutual, distributed and common knowledge, and also dynamics in the shape of simplicial action models. We give a survey on how to interpret all such notions on simplicial complexes, building upon the foundations laid in prior work by Goubault and others.
Social networks have been of much interest in recent years. We here focus on a network structure derived from co-occurrences of people in traditional newspaper media. We find three clear deviations from what can be expected in a random graph. First, the average degree in the empirical network is much lower than expected, and the average weight of a link much higher than expected. Secondly, high degree nodes attract disproportionately much weight. Thirdly, relatively much of the weight seems to concentrate between high degree nodes. We believe this can be explained by the fact that most people tend to co-occur repeatedly with the same people. We create a model that replicates these observations qualitatively based on two self-reinforcing processes: (1) more frequently occurring persons are more likely to occur again; and (2) if two people co-occur frequently, they are more likely to co-occur again. This suggest that the media tends to focus on people that are already in the news, and that they reinforce existing co-occurrences.
Even as we advance the frontiers of physics knowledge, our understanding of how this knowledge evolves remains at the descriptive levels of Popper and Kuhn. Using the APS publications data sets, we ask in this letter how new knowledge is built upon o ld knowledge. We do so by constructing year-to-year bibliographic coupling networks, and identify in them validated communities that represent different research fields. We then visualize their evolutionary relationships in the form of alluvial diagrams, and show how they remain intact through APS journal splits. Quantitatively, we see that most fields undergo weak Popperian mixing, and it is rare for a field to remain isolated/undergo strong mixing. The sizes of fields obey a simple linear growth with recombination. We can also reliably predict the merging between two fields, but not for the considerably more complex splitting. Finally, we report a case study of two fields that underwent repeated merging and splitting around 1995, and how these Kuhnian events are correlated with breakthroughs on BEC, quantum teleportation, and slow light. This impact showed up quantitatively in the citations of the BEC field as a larger proportion of references from during and shortly after these events.
The sound inventories of the worlds languages self-organize themselves giving rise to similar cross-linguistic patterns. In this work we attempt to capture this phenomenon of self-organization, which shapes the structure of the consonant inventories, through a complex network approach. For this purpose we define the occurrence and co-occurrence networks of consonants and systematically study some of their important topological properties. A crucial observation is that the occurrence as well as the co-occurrence of consonants across languages follow a power law distribution. This property is arguably a consequence of the principle of preferential attachment. In order to support this argument we propose a synthesis model which reproduces the degree distribution for the networks to a close approximation. We further observe that the co-occurrence network of consonants show a high degree of clustering and subsequently refine our synthesis model in order to incorporate this property. Finally, we discuss how preferential attachment manifests itself through the evolutionary nature of language.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا