ﻻ يوجد ملخص باللغة العربية
We reconstruct the 3D structure of magnetic fields, which were seeded by density perturbations during the radiation dominated epoch of the Universe and later on were evolved by structure formation. To achieve this goal, we rely on three dimensional initial density fields inferred from the 2M++ galaxy compilation via the Bayesian $texttt{BORG}$ algorithm. Using those, we estimate the magnetogenesis by the so called Harrison mechanism. This effect produced magnetic fields exploiting the different photon drag on electrons and ions in vortical motions, which are exited due to second order perturbation effects in the Early Universe. Subsequently we study the evolution of these seed fields through the non-linear cosmic structure formation by virtue of a MHD simulation to obtain a 3D estimate for the structure of this primordial magnetic field component today. At recombination we obtain a reliable lower limit on the large scale magnetic field strength around $10^{-23} mathrm{G}$, with a power spectrum peaking at about $ 2, mathrm{Mpc}^{-1}h$ in comoving scales. At present we expect this evolved primordial field to have strengthts above $approx 10^{-27}, mathrm{G}$ and $approx 10^{-29}, mathrm{G}$ in clusters of galaxies and voids, respectively. We also calculate the corresponding Faraday rotation measure map and show the magnetic field morphology and strength for specific objects of the Local Universe.
Primordial magnetic fields will generate non-Gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic no
Future remote sensing of exoplanets will be enhanced by a thorough investigation of our solar system Ice Giants (Neptune-size planets). What can the configuration of the magnetic field tell us (remotely) about the interior, and what implications does
Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB) even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB no
NGC 1448 is one of the nearest luminous galaxies ($L_{8-1000mu m} >$ 10$^{9} L_{odot}$) to ours ($z$ $=$ 0.00390), and yet the active galactic nucleus (AGN) it hosts was only recently discovered, in 2009. In this paper, we present an analysis of the
Signatures of the processes in the early Universe are imprinted in the cosmic web. Some of them may define shell-like structures characterised by typical scales. We search for shell-like structures in the distribution of nearby rich clusters of galax