ﻻ يوجد ملخص باللغة العربية
Recently the influence of antisymmetric spin-orbit coupling has been studied in novel topological superconductors such as half-Heuslers and artificial hetero-structures. We investigate the effect of Rashba and/or Dresselhaus spin-orbit couplings on the band structure and topological properties of a two-dimensional noncentrosymetric superconductor. For this goal, the topological helical edge modes are analyzed for different spin-orbit couplings as well as for several superconducting pairing symmetries. To explore the transport properties, we examine the response of the spin-polarized edge states to an exchange field in a superconductor-ferromagnet heterostructure. The broken chiral symmetry causes the uni-directional currents at opposite edges.
We report Raman scattering measurement of charge nematic fluctuations in the tetragonal phase of BaFe$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$ (x=0.04) single crystals. In both systems, the observed nematic fluctuations are found to exhibit diver
It is shown theoretically that ferromagnetic superconductors, UGe$_2$, URhGe, and UCoGe can be described in terms of the A-phase like triplet pairing similar to superfluid $^3$He in a unified way, including peculiar reentrant, S-shape, or L-shape $H_
We report superconductivity in the ternary half-Heusler compound LuPtBi, with Tc = 1.0 K and Hc2 = 1.6 T. The crystal structure of LuPtBi lacks inversion symmetry, hence the material is a noncentrosymmetric superconductor. Magnetotransport data show
A time periodic driving on a topologically trivial system induces edge modes and topological properties. In this work we consider triplet and singlet superconductors subject to periodic variations of the chemical potential, spin-orbit coupling and ma
We use polarized neutron scattering to demonstrate that in-plane spin excitations in electron doped superconducting BaFe1.904Ni0.096As2 (Tc=19.8 K) change from isotropic to anisotropic in the tetragonal phase well above the antiferromagnetic (AF) ord