ترغب بنشر مسار تعليمي؟ اضغط هنا

On the symmetrized arithmetic-geometric mean inequality for opertors

75   0   0.0 ( 0 )
 نشر من قبل Mingyu Zhao
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the symmetrized noncommutative arithmetic geometric mean inequality introduced(AGM) by Recht and R{e} $$ |frac{(n-d)!}{n!}sumlimits_{{ j_1,...,j_d mbox{ different}} }A_{j_{1}}^*A_{j_{2}}^*...A_{j_{d}}^*A_{j_{d}}...A_{j_{2}}A_{j_{1}} | leq C(d,n) |frac{1}{n} sum_{j=1}^n A_j^*A_j|^d .$$ Complementing the results from Recht and R{e}, we find upper bounds for C(d,n) under additional assumptions. Moreover, using free probability, we show that $C(d, n) > 1$, thereby disproving the most optimistic conjecture from Recht and R{e}.We also prove a deviation result for the symmetrized-AGM inequality which shows that the symmetric inequality almost holds for many classes of random matrices. Finally we apply our results to the incremental gradient method(IGM).



قيم البحث

اقرأ أيضاً

In a recent work, Moslehian and Rajic have shown that the Gruss inequality holds for unital n-positive linear maps $phi:mathcal A rightarrow B(H)$, where $mathcal A$ is a unital C*-algebra and H is a Hilbert space, if $n ge 3$. They also demonstrate that the inequality fails to hold, in general, if $n = 1$ and question whether the inequality holds if $n=2$. In this article, we provide an affirmative answer to this question.
84 - Sanguo Zhu , Shu Zou 2019
Let $E$ be a Bedford-McMullen carpet associated with a set of affine mappings ${f_{ij}}_{(i,j)in G}$ and let $mu$ be the self-affine measure associated with ${f_{ij}}_{(i,j)in G}$ and a probability vector $(p_{ij})_{(i,j)in G}$. We study the asymptot ics of the geometric mean error in the quantization for $mu$. Let $s_0$ be the Hausdorff dimension for $mu$. Assuming a separation condition for ${f_{ij}}_{(i,j)in G}$, we prove that the $n$th geometric error for $mu$ is of the same order as $n^{-1/s_0}$.
We consider a version of the fractional Sobolev inequality in domains and study whether the best constant in this inequality is attained. For the half-space and a large class of bounded domains we show that a minimizer exists, which is in contrast to the classical Sobolev inequalities in domains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا