ترغب بنشر مسار تعليمي؟ اضغط هنا

Population Extinction under Bursty Reproduction in a Time Modulated Environment

150   0   0.0 ( 0 )
 نشر من قبل Michael Assaf
 تاريخ النشر 2018
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years non-demographic variability has been shown to greatly affect dynamics of stochastic populations. For example, non-demographic noise in the form of a bursty reproduction process with an a-priori unknown burst size, or environmental variability in the form of time-varying reaction rates, have been separately found to dramatically impact the extinction risk of isolated populations. In this work we investigate the extinction risk of an isolated population under the combined influence of these two types of non-demographic variation. Using the so-called momentum-space WKB approach we arrive at a set of time-dependent Hamilton equations. In order to account for the explicit time dependence, we find the instanton of the time-perturbed Hamiltonian numerically, where analytical expressions are presented in particular limits using various perturbation techniques. We focus on two classes of time-varying environments: periodically-varying rates corresponding to seasonal effects, and a sudden decrease in the birth rate corresponding to a catastrophe. All our theoretical results are tested against numerical Monte Carlo simulations with time-dependent rates and also against a numerical solution of the corresponding time-dependent Hamilton equations.



قيم البحث

اقرأ أيضاً

236 - Ohad Vilk , Michael Assaf 2019
We study the extinction risk of a fragmented population residing on a network of patches coupled by migration, where the local patch dynamics include the Allee effect. We show that mixing between patches dramatically influences the populations viabil ity. Slow migration is shown to always increase the populations global extinction risk compared to the isolated case. At fast migration, we demonstrate that synchrony between patches minimizes the populations extinction risk. Moreover, we discover a critical migration rate that maximizes the extinction risk of the population, and identify an early-warning signal when approaching this state. Our theoretical results are confirmed via the highly-efficient weighted ensemble method. Notably, our analysis can also be applied to studying switching in gene regulatory networks with multiple transcriptional states.
Many populations in nature are fragmented: they consist of local populations occupying separate patches. A local population is prone to extinction due to the shot noise of birth and death processes. A migrating population from another patch can drama tically delay the extinction. What is the optimal migration rate that minimizes the extinction risk of the whole population? Here we answer this question for a connected network of model habitat patches with different carrying capacities.
Environmental changes greatly influence the evolution of populations. Here, we study the dynamics of a population of two strains, one growing slightly faster than the other, competing for resources in a time-varying binary environment modeled by a ca rrying capacity switching either randomly or periodically between states of abundance and scarcity. The population dynamics is characterized by demographic noise (birth and death events) coupled to a varying environment. We elucidate the similarities and differences of the evolution subject to a stochastically- and periodically-varying environment. Importantly, the population size distribution is generally found to be broader under intermediate and fast random switching than under periodic variations, which results in markedly different asymptotic behaviors between the fixation probability of random and periodic switching. We also determine the detailed conditions under which the fixation probability of the slow strain is maximal.
We study the genetic behaviour of a population formed by haploid individuals which reproduce asexually. The genetic information for each individual is stored along a bit-string (or chromosome) with L bits, where 0-bits represent the wild-type allele and 1-bits correspond to harmful mutations. Each newborn inherits this chromosome from its parent with some few random mutations: on average a fixed number m of bits are flipped. Selection is implemented according to the number N of 1-bits counted along the individuals chromosome: the smaller N the higher the probability an individual has to survive a new time step. Such a population evolves, with births and deaths, and its genetic distribution becomes stabilised after many enough generations have passed. The question we pose concerns the procedure of increasing L. The aim is to get the same distribution of relative genetic loads N/L among the equilibrated population, in spite of a larger L. Should we keep the same mutation rate m/L for different values of L? The answer is yes, which intuitively seems to be plausible. However, this conclusion is not trivial, according to our simulational results: the question involves also the population size.
73 - Shay Beer , Michael Assaf 2016
Recently, a first step was made by the authors towards a systematic investigation of the effect of reaction-step-size noise - uncertainty in the step size of the reaction - on the dynamics of stochastic populations. This was done by investigating the effect of bursty influx on the switching dynamics of stochastic populations. Here we extend this formalism to account for bursty reproduction processes, and improve the accuracy of the formalism to include subleading-order corrections. Bursty reproduction appears in various contexts, where notable examples include bursty viral production from infected cells, and reproduction of mammals involving varying number of offspring. The main question we quantitatively address is how bursty reproduction affects the overall fate of the population. We consider two complementary scenarios: population extinction and population survival; in the former a population gets extinct after maintaining a long-lived metastable state, whereas in the latter a population proliferates despite undergoing a deterministic drift towards extinction. In both models reproduction occurs in bursts, sampled from an arbitrary distribution. In the extinction problem, we show that bursty reproduction broadens the quasi-stationary distribution of population sizes in the metastable state, which results in an exponential decrease of the mean time to extinction. In the survival problem, bursty reproduction yields an exponential increase in survival probability of the population. Close to the bifurcation limit our analytical results simplify considerably and are shown to depend solely on the mean and variance of the burst-size distribution. Our formalism is demonstrated on several realistic distributions which all compare well with numerical Monte-Carlo simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا