ﻻ يوجد ملخص باللغة العربية
Chemical exfoliation of MAX phases into two-dimensional (2D) MXenes can be considered as a major breakthrough in the synthesis of novel 2D systems. To gain insight into the exfoliation possibility of MAX phases and to identify which MAX phases are promising candidates for successful exfoliation into 2D MXenes, we perform extensive electronic structure and phonon calculations, and determine the force constants, bond strengths, and static exfoliation energies of MAX phases to MXenes for 82 different experimentally synthesized crystalline MAX phases. Our results show a clear correlation between the force constants and the bond strengths. As the total force constant of an A atom contributed from the neighboring atoms is smaller, the exfoliation energy becomes smaller, thus making exfoliation easier. We propose 37 MAX phases for successful exfoliation into 2D Ti$_2$C, Ti$_3$C$_2$, Ti$_4$C$_3, $Ti$_5$C$_4$, Ti$_2$N, Zr$_2$C, Hf$_2$C, V$_2$C, V$_3$C$_2$, V$_4$C$_3$, Nb$_2$C, Nb$_5$C$_4$, Ta$_2$C, Ta$_5$C$_4$, Cr$_2$C, Cr$_2$N, and Mo$_2$C MXenes. In addition, we explore the effect of charge injection on MAX phases. We find that the injected charges, both electrons and holes, are mainly received by the transition metals. This is due to the electronic property of MAX phases that the states near the Fermi energy are mainly dominated by $d$ orbitals of the transition metals. For negatively charged MAX phases, the electrons injected cause swelling of the structure and elongation of the bond distances along the $c$ axis, which hence weakens the binding. For positively charged MAX phases, on the other hand, the bonds become shorter and stronger. Therefore, we predict that the electron injection by electrochemistry or gating techniques can significantly facilitate the exfoliation possibility of MAX phases to 2D MXenes.
Considering the recent breakthroughs in the synthesis of novel two-dimensional (2D) materials from layered bulk structures, ternary layered transition metal borides, known as MAB phases, have come under scrutiny as a means of obtaining novel 2D trans
Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesize a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacem
A DFT study of the synthesized MAX phase Zr2SeC has been carried out for the first time to explore its physical properties for possible applications in many sectors. The studied properties are compared with prior known MAX phase Zr2SC. The structural
In this paper, we study the importance of pruning in Deep Networks (DNs) and the yin & yang relationship between (1) pruning highly overparametrized DNs that have been trained from random initialization and (2) training small DNs that have been cleve
We examine the mystery of the disputed high-magnetization alpha-Fe16N2 phase, employing the Heyd-Scuseria-Ernzerhof screened hybrid functional method, perturbative many-body corrections through the GW approximation, and onsite Coulomb correlations th