ﻻ يوجد ملخص باللغة العربية
Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional screw isometry beyond the usual five. The consequences of this extra symmetry are explored.
We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einsteins vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by obse
The gravitational memory effect due to an exact plane wave provides us with an elementary description of the diffeomorphisms associated with soft gravitons. It is explained how the presence of the latter may be detected by observing the motion of fre
The Eisenhart lift of a Paul Trap used to store ions in molecular physics is a linearly polarized periodic gravitational wave. A modified version of Dehmelts Penning Trap is in turn related to circularly polarized periodic gravitational waves, sought
General metric theories in a four-dimensional spacetime allow at most six polarization states (two spin-0, two spin-1 and two spin-2) of gravitational waves (GWs). If a sky location of a GW source with the electromagnetic counterpart satisfies a sing
The direct detection of gravitational waves now provides a new channel of testing gravity theories. Despite that the parametrized post-Einsteinian framework is a powerful tool to quantitatively investigate effects of modification of gravity theory, t