ﻻ يوجد ملخص باللغة العربية
Nanophononics is essential for the engineering of thermal transport in nanostructured electronic devices, it greatly facilitates the manipulation of mechanical resonators in the quantum regime, and could unveil a new route in quantum communications using phonons as carriers of information. Acoustic phonons also constitute a versatile platform for the study of fundamental wave dynamics, including Bloch oscillations, Wannier Stark ladders and other localization phenomena. Many of the phenomena studied in nanophononics were indeed inspired by their counterparts in optics and electronics. In these fields, the consideration of topological invariants to control wave dynamics has already had a great impact for the generation of robust confined states. Interestingly, the use of topological phases to engineer nanophononic devices remains an unexplored and promising field. Conversely, the use of acoustic phonons could constitute a rich platform to study topological states. Here, we introduce the concept of topological invariants to nanophononics and experimentally implement a nanophononic system supporting a robust topological interface state at 350 GHz. The state is constructed through band inversion, i.e. by concatenating two semiconductor superlattices with inverted spatial mode symmetries. The existence of this state is purely determined by the Zak phases of the constituent superlattices, i.e. that one-dimensional Berry phase. We experimentally evidenced the mode through Raman spectroscopy. The reported robust topological interface states could become part of nanophononic devices requiring resonant structures such as sensors or phonon lasers.
One of the hallmarks of topological insulators is the correspondence between the value of its bulk topological invariant and the number of topologically protected edge modes observed in a finite-sized sample. This bulk-boundary correspondence has bee
We address the problem of hybridization between topological surface states and a non-topological flat bulk band. Our model, being a mixture of three-dimensional Bernevig-Hughes-Zhang and two-dimensional pseudospin-1 Hamiltonian, allows explicit treat
Macroscopic two-dimensional sonic crystals with inversion symmetry are studied to reveal higher-order topological physics in classical wave systems. By tuning a single geometry parameter, the band topology of the bulk and the edges can be controlled
We have performed angle-resolved photoemission spectroscopy on (PbSe)5(Bi2Se3)3m, which forms a natural multilayer heterostructure consisting of a topological insulator (TI) and an ordinary insulator. For m = 2, we observed a gapped Dirac-cone state
Spin orbit coupling (SOC) is the key to realizing time-reversal invariant topological phases of matter. Famously, SOC was predicted by Kane and Mele to stabilize a quantum spin Hall insulator; however, the weak intrinsic SOC in monolayer graphene has