ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing Charm Quark Equilibration in Ultra-High Energy Heavy Ion Collisions with Fluctuations

64   0   0.0 ( 0 )
 نشر من قبل Christoph Herold
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent lattice QCD data on higher order susceptibilities of Charm quarks provide the opportunity to explore Charm quark equilibration in the early quark gluon plasma (QGP) phase. Here, we propose to use the lattice data on second and fourth order net Charm susceptibilities to infer the Charm quark equilibration temperature and the corresponding volume, in the early QGP stage, via a combined analysis of experimentally measured multiplicity fluctuations. Furthermore, the first perturbative results for the second and fourth order Charm quark susceptibilities and their ratio are presented.



قيم البحث

اقرأ أيضاً

The initial distribution of gluons at the very early times after a high energy heavy ion collision is described by the bulk scale $Q_s$ of gluon saturation in the nuclear wavefunction. The subsequent evolution of the system towards kinetic equilibriu m is described by a non-linear Landau equation for the single particle distributions cite{Mueller1,Mueller2}. In this paper, we solve this equation numerically for the idealized initial conditions proposed by Mueller, and study the evolution of the system to equilibrium. We discuss the sensitivity of our results on the dynamical screening of collinear divergences. In a particular model of dynamical screening, the convergence to the hydrodynamic limit is seen to be rapid relative to hydrodynamic time scales. The equilibration time, the initial temperature, and the chemical potential are shown to have a strong functional dependence on the initial gluon saturation scale $Q_s$.
Four models for the initial conditions of a fluid dynamic description of high energy heavy ion collisions are analysed and compared. We study expectation values and event-by-event fluctuations in the initial transverse energy density profiles from Pb -Pb collisions. Specifically, introducing a Fourier-Bessel mode expansion for fluctuations, we determine expectation values and two-mode correlation functions of the expansion coefficients. The analytically solveable independent point-sources model is compared to an initial state model based on Glauber theory and two models based on the Color Glass Condensate framework. We find that the large wavelength modes of all investigated models show universal properties for central collisions and also discuss to which extent general properties of initial conditions can be understood analytically.
Modelling Quark-Gluon Plasma formation and decay in high energy heavy ion reactions is presented in a framework of a multi-module setup. The collective features, governing the equlibrated fluid dynamical stages of the model are emphasized. Flow effec ts formed from the initial conditions are discussed. Particular attention is given to the improvement of the final hadronization and freeze-out part of the reaction which has strong effects on the observables.
93 - H. Fujii 2003
Quarkonium suppression in heavy ion collisions is a potential signature of the formation of the quark-gluon plasma. After a very brief review of the J/psi result at CERN, we restrict our discussion to the effects of the high-energy multiple scattering of the quark pair in the colliding nuclei.
Quarkonium production in high-energy proton (deuteron)-nucleus collisions is investigated in the color glass condensate framework. We employ the color evaporation model assuming that the quark pair produced from dense small-x gluons in the nuclear ta rget bounds into a quarkonium outside the target. The unintegrated gluon distribution at small Bjorken x in the nuclear target is treated with the Balitsky-Kovchegov equation with running coupling corrections. For the gluons in the proton, we examine two possible descriptions, unintegrated gluon distribution and ordinary collinear gluon distribution. We present the transverse momentum spectrum and nuclear modification factor for J/psi production at RHIC and LHC energies, and those for Upsilon(1S) at LHC energy, and discuss the nuclear modification factor and the momentum broadening by changing the rapidity and the initial saturation scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا