ترغب بنشر مسار تعليمي؟ اضغط هنا

Geomagnetic storm forecasting service StormFocus: 5 years online

47   0   0.0 ( 0 )
 نشر من قبل Tatiana Podladchikova
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Forecasting geomagnetic storms is highly important for many space weather applications. In this study we review performance of the geomagnetic storm forecasting service StormFocus during 2011--2016. The service was implemented in 2011 at SpaceWeather.Ru and predicts the expected strength of geomagnetic storms as measured by $Dst$ index several hours ahead. The forecast is based on L1 solar wind and IMF measurements and is updated every hour. The solar maximum of cycle 24 is weak, so most of the statistics are on rather moderate storms. We verify quality of selection criteria, as well as reliability of real-time input data in comparison with the final values, available in archives. In real-time operation 87% of storms were correctly predicted while the reanalysis running on final OMNI data predicts successfully 97% of storms. Thus the main reasons for prediction errors are discrepancies between real-time and final data (Dst, solar wind and IMF) due to processing errors, specifics of datasets.



قيم البحث

اقرأ أيضاً

Data from the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) satellite experiment were used to measure the geomagnetic cutoff for high-energy (>80 MeV) protons during the 14 December 2006 geomagnetic storm. The varia tions of the cutoff latitude as a function of rigidity were studied on relatively short timescales, corresponding to spacecraft orbital periods (94 min). Estimated cutoff values were compared with those obtained by means of a trajectory tracing approach based on a dynamical empirical modeling of the Earths magnetosphere. We found significant variations in the cutoff latitude, with a maximum suppression of about 7 deg at lowest rigidities during the main phase of the storm. The observed reduction in the geomagnetic shielding and its temporal evolution were related to the changes in the magnetospheric configuration, investigating the role of interplanetary magnetic field, solar wind and geomagnetic parameters. PAMELAs results represent the first direct measurement of geomagnetic cutoffs for protons with kinetic energies in the sub-GeV and GeV region.
Using the reconstruction of power input to the magnetosphere given in Paper 1 (arXiv:1708.04904), we reconstruct annual means of geomagnetic indices over the past 400 years to within a 1-sigma error of +/-20 pc. In addition, we study the behaviour of the lognormal distribution of daily and hourly values about these annual means and show that we can also reconstruct the fraction of geomagnetically-active (storm-like) days and (substorm-like) hours in each year to accuracies of 50-60 pc. The results are the first physics-based quantification of the space weather conditions in both the Dalton and Maunder minima. We predict terrestrial disturbance levels in future repeats of these minima, allowing for the weakening of Earths dipole moment.
Low-energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise if continuous longtime observations, such as during a geomagnetic storm, are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near-Earth region during geomagnetic storms.
In this study, we investigate thermospheric neutral mass density heating associated with 168 CME-driven geomagnetic storms in the period of May 2001 to September 2011. We use neutral density measured by two low-Earth orbit satellites: CHAMP and GRACE . For each storm, we superpose geomagnetic and density data for the time when the IMF B$_mathrm{z}$ component turns sharply southward chosen as the zero epoch time. This indicates the storm main phase onset. We find that the average SYM-H index reaches the minimum of $-$42 nT near 12 hours after storm main phase onset. The Joule heating is enhanced by approximately 200% in comparison to quiet values. In respect to thermosphere density, on average, high latitude regions (auroral zones and polar caps) of both hemispheres are highly heated in the first 1.5 hour of the storm. The equatorial response is presumably associated with direct equator-ward propagation of TADs (traveling atmospheric disturbances). A slight north-south asymmetry in thermosphere heating is found and is most likely due to a positive B$_mathrm{y}$ component in the first hours of the storm main phase.
The dynamical relationship between magnetic storms and magnetospheric substorms presents one of the most controversial problems of contemporary geospace research. Here, we tackle this issue by applying a causal inference approach to two corresponding indices in conjunction with several relevant solar wind variables. We demonstrate that the vertical component of the interplanetary magnetic field is the strongest and common driver of both, storms and substorms, and explains their the previously reported association. These results hold during both solar maximum and minimum phases and suggest that, at least based on the analyzed indices, there is no statistical evidence for a direct or indirect dependency between substorms and storms. A physical mechanism by which substorms drive storms or vice versa is, therefore, unlikely.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا