ﻻ يوجد ملخص باللغة العربية
In this paper our aim is to find the radii of starlikeness and convexity of Bessel function derivatives for three different kind of normalization. The key tools in the proof of our main results are the Mittag-Leffler expansion for nth derivative of Bessel function and properties of real zeros of it. In addition, by using the Euler-Rayleigh inequalities we obtain some tight lower and upper bounds for the radii of starlikeness and convexity of order zero for the normalized nth derivative of Bessel function. The main results of the paper are natural extensions of some known results on classical Bessel functions of the first kind.
Sufficient conditions are determined on the parameters such that the generalized and normalized Bessel function of the first kind and other related functions belong to subclasses of starlike and convex functions defined in the unit disk associated wi
We will provide sufficient conditions for the shifted hypergeometric function $z_2F_1(a,b;c;z)$ to be a member of a specific subclass of starlike functions in terms of the complex parameters $a,b$ and $c.$ For example, we study starlikeness of order
For $ngeq 4$ (even), the function $varphi_{nmathcal{L}}(z)=1+nz/(n+1)+z^n/(n+1)$ maps the unit disk $mathbb{D}$ onto a domain bounded by an epicycloid with $n-1$ cusps. In this paper, the class $mathcal{S}^*_{nmathcal{L}} = mathcal{S}^*(varphi_{nmath
In this paper, sums represented in (3) are studied. The expressions are derived in terms of Bessel functions of the first and second kinds and their integrals. Further, we point out the integrals can be written as a Meijer G function.
In this paper our aim is to find the radii of starlikeness and convexity for three different kind of normalization of the $N_ u(z)=az^{2}J_{ u }^{prime prime }(z)+bzJ_{ u }^{prime}(z)+cJ_{ u }(z)$ function, where $J_ u(z)$ is called the Bessel functi