From mean-field localized magnetism to itinerant spin fluctuations in the Non-metallic metal - FeCrAs


الملخص بالإنكليزية

FeCrAs displays an unusual electrical response that is neither metallic in character nor divergent at low temperatures, as expected for an insulating response, and therefore it has been termed a nonmetal-metal. We carried out neutron scattering experiments on powder and single crystal samples to study the magnetic dynamics and critical fluctuations in FeCrAs. Magnetic neutron diffraction measurements find Cr3+ magnetic order setting in at 115 K with the mean-field critical exponent. Neutron spectroscopy, however, observes gapless stiff magnetic fluctuations emanating from magnetic positions with propagation wave vector q_0=(1/3,1/3), which persists up to at least 80 meV. The magnetism in FeCrAs therefore displays a response which resembles that of itinerant magnets at high energy transfers, such as chromium alloys. We suggest that the presence of stiff high-energy spin fluctuations is the origin of the unusual temperature dependence of the resistivity.

تحميل البحث