ترغب بنشر مسار تعليمي؟ اضغط هنا

Multilevel nested simulation for efficient risk estimation

210   0   0.0 ( 0 )
 نشر من قبل Abdul-Lateef Haji-Ali
 تاريخ النشر 2018
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the problem of computing a nested expectation of the form $mathbb{P}[mathbb{E}[X|Y] !geq!0]!=!mathbb{E}[textrm{H}(mathbb{E}[X|Y])]$ where $textrm{H}$ is the Heaviside function. This nested expectation appears, for example, when estimating the probability of a large loss from a financial portfolio. We present a method that combines the idea of using Multilevel Monte Carlo (MLMC) for nested expectations with the idea of adaptively selecting the number of samples in the approximation of the inner expectation, as proposed by (Broadie et al., 2011). We propose and analyse an algorithm that adaptively selects the number of inner samples on each MLMC level and prove that the resulting MLMC method with adaptive sampling has an $mathcal{O}left( varepsilon^{-2}|logvarepsilon|^2 right)$ complexity to achieve a root mean-squared error $varepsilon$. The theoretical analysis is verified by numerical experiments on a simple model problem. We also present a stochastic root-finding algorithm that, combined with our adaptive methods, can be used to compute other risk measures such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), with the latter being achieved with $mathcal{O}left(varepsilon^{-2}right)$ complexity.



قيم البحث

اقرأ أيضاً

We consider the problem of estimating the probability of a large loss from a financial portfolio, where the future loss is expressed as a conditional expectation. Since the conditional expectation is intractable in most cases, one may resort to neste d simulation. To reduce the complexity of nested simulation, we present a method that combines multilevel Monte Carlo (MLMC) and quasi-Monte Carlo (QMC). In the outer simulation, we use Monte Carlo to generate financial scenarios. In the inner simulation, we use QMC to estimate the portfolio loss in each scenario. We prove that using QMC can accelerate the convergence rates in both the crude nested simulation and the multilevel nested simulation. Under certain conditions, the complexity of MLMC can be reduced to $O(epsilon^{-2}(log epsilon)^2)$ by incorporating QMC. On the other hand, we find that MLMC encounters catastrophic coupling problem due to the existence of indicator functions. To remedy this, we propose a smoothed MLMC method which uses logistic sigmoid functions to approximate indicator functions. Numerical results show that the optimal complexity $O(epsilon^{-2})$ is almost attained when using QMC methods in both MLMC and smoothed MLMC, even in moderate high dimensions.
In this paper we develop a novel methodology for estimation of risk capital allocation. The methodology is rooted in the theory of risk measures. We work within a general, but tractable class of law-invariant coherent risk measures, with a particular focus on expected shortfall. We introduce the concept of fair capital allocations and provide explicit formulae for fair capital allocations in case when the constituents of the risky portfolio are jointly normally distributed. The main focus of the paper is on the problem of approximating fair portfolio allocations in the case of not fully known law of the portfolio constituents. We define and study the concepts of fair allocation estimators and asymptotically fair allocation estimators. A substantial part of our study is devoted to the problem of estimating fair risk allocations for expected shortfall. We study this problem under normality as well as in a nonparametric setup. We derive several estimators, and prove their fairness and/or asymptotic fairness. Last, but not least, we propose two backtesting methodologies that are oriented at assessing the performance of the allocation estimation procedure. The paper closes with a substantial numerical study of the subject.
Computing risk measures of a financial portfolio comprising thousands of options is a challenging problem because (a) it involves a nested expectation requiring multiple evaluations of the loss of the financial portfolio for different risk scenarios and (b) evaluating the loss of the portfolio is expensive and the cost increases with its size. In this work, we look at applying Multilevel Monte Carlo (MLMC) with adaptive inner sampling to this problem and discuss several practical considerations. In particular, we discuss a sub-sampling strategy that results in a method whose computational complexity does not increase with the size of the portfolio. We also discuss several control variates that significantly improve the efficiency of MLMC in our setting.
215 - Takuji Arai 2015
We derive representations of local risk-minimization of call and put options for Barndorff-Nielsen and Shephard models: jump type stochastic volatility models whose squared volatility process is given by a non-Gaussian rnstein-Uhlenbeck process. The general form of Barndorff-Nielsen and Shephard models includes two parameters: volatility risk premium $beta$ and leverage effect $rho$. Arai and Suzuki (2015, arxiv:1503.08589) dealt with the same problem under constraint $beta=-frac{1}{2}$. In this paper, we relax the restriction on $beta$; and restrict $rho$ to $0$ instead. We introduce a Malliavin calculus under the minimal martingale measure to solve the problem.
In this article we consider static Bayesian parameter estimation for partially observed diffusions that are discretely observed. We work under the assumption that one must resort to discretizing the underlying diffusion process, for instance using th e Euler-Maruyama method. Given this assumption, we show how one can use Markov chain Monte Carlo (MCMC) and particularly particle MCMC [Andrieu, C., Doucet, A. and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods (with discussion). J. R. Statist. Soc. Ser. B, 72, 269--342] to implement a new approximation of the multilevel (ML) Monte Carlo (MC) collapsing sum identity. Our approach comprises constructing an approximate coupling of the posterior density of the joint distribution over parameter and hidden variables at two different discretization levels and then correcting by an importance sampling method. The variance of the weights are independent of the length of the observed data set. The utility of such a method is that, for a prescribed level of mean square error, the cost of this MLMC method is provably less than i.i.d. sampling from the posterior associated to the most precise discretization. However the method here comprises using only known and efficient simulation methodologies. The theoretical results are illustrated by inference of the parameters of two prototypical processes given noisy partial observations of the process: the first is an Ornstein Uhlenbeck process and the second is a more general Langevin equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا