ترغب بنشر مسار تعليمي؟ اضغط هنا

Debris Disks: Structure, Composition, and Variability

81   0   0.0 ( 0 )
 نشر من قبل A. Meredith Hughes
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Debris disks are tenuous, dust-dominated disks commonly observed around stars over a wide range of ages. Those around main sequence stars are analogous to the Solar Systems Kuiper Belt and Zodiacal light. The dust in debris disks is believed to be continuously regenerated, originating primarily with collisions of planetesimals. Observations of debris disks provide insight into the evolution of planetary systems; the composition of dust, comets, and planetesimals outside the Solar System; as well as placing constraints on the orbital architecture and potentially the masses of exoplanets that are not otherwise detectable. This review highlights recent advances in multiwavelength, high-resolution scattered light and thermal imaging that have revealed a complex and intricate diversity of structures in debris disks, and discusses how modeling methods are evolving with the breadth and depth of the available observations. Two rapidly advancing subfields highlighted in this review include observations of atomic and molecular gas around main sequence stars, and variations in emission from debris disks on very short (days to years) timescales, providing evidence of non-steady state collisional evolution particularly in young debris disks.



قيم البحث

اقرأ أيضاً

The light scattered from dust grains in debris disks is typically modeled as compact spheres using Lorenz-Mie theory or as porous spheres by incorporating an effective medium theory. In this work we examine the effect of incorporating a more realisti c particle morphology on estimated radiation-pressure blowout sizes. To calculate the scattering and absorption cross sections of irregularly shaped dust grains, we use the discrete dipole approximation. These cross sections are necessary to calculate the $beta$-ratio, which determines whether dust grains can remain gravitationally bound to their star. We calculate blowout sizes for a range of stellar spectral types corresponding with stars known to host debris disks. As with compact spheres, more luminous stars blow out larger irregularly shaped dust grains. We also find that dust grain composition influences blowout size such that absorptive grains are more readily removed from the disk. Moreover, the difference between blowout sizes calculated assuming spherical particles versus particle morphologies more representative of real dust particles is compositionally dependent as well, with blowout size estimates diverging further for transparent grains. We find that the blowout sizes calculated have a strong dependence on the particle model used, with differences in the blowout size calculated being as large as an order of magnitude for particles of similar porosities.
We review the nearby debris disk structures revealed by multi-wavelength images from Spitzer and Herschel, and complemented with detailed spectral energy distribution modeling. Similar to the definition of habitable zones around stars, debris disk st ructures should be identified and characterized in terms of dust temperatures rather than physical distances so that the heating power of different spectral type of stars is taken into account and common features in disks can be discussed and compared directly. Common features, such as warm (~150 K) dust belts near the water-ice line and cold (~50 K) Kuiper-belt analogs, give rise to our emerging understanding of the levels of order in debris disk structures and illuminate various processes about the formation and evolution of exoplanetary systems. In light of the disk structures in the debris disk twins (Vega and Fomalhaut), and the current limits on the masses of planetary objects, we suggest that the large gap between the warm and cold dust belts is the best signpost for multiple (low-mass) planets beyond the water-ice line.
The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indi cating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai-Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.
Debris disks are exoplanetary systems containing planets, minor bodies (such as asteroids and comets) and debris dust. Unseen planets are presumed to perturb the minor bodies into crossing orbits, generating small dust grains that are detected via re mote sensing. Debris disks have been discovered around main sequence stars of a variety of ages (from 10 Myr to several Gyr) and stellar spectral types (from early A-type to M-type stars). As a result, they serve as excellent laboratories for understanding whether the architecture and the evolution of our Solar System is common or rare. This white paper addresses two outstanding questions in debris disk science: (1) Are debris disk minor bodies similar to asteroids and comets in our Solar System? (2) Do planets separate circumstellar material into distinct reservoirs and/or mix material during planet migration? We anticipate that SOFIA/HIRMES, JWST, and WFIRST/CGI will greatly improve our understanding of debris disk composition, enabling the astronomical community to answer these questions. However, we note that despite their observational power, these facilities will not provide large numbers of detections or detailed characterization of cold ices and silicates in the Trans Neptunian zone. Origins Space Telescope is needed to revolutionize our understanding of the bulk composition and mixing in exoplanetary systems.
Circumstantial evidence suggests that most known extra-solar planetary systems are survivors of violent dynamical instabilities. Here we explore how giant planet instabilities affect the formation and survival of terrestrial planets. We simulate plan etary system evolution around Sun-like stars from initial conditions that comprise: an inner disk of planetesimals and planetary embryos, three giant planets at Jupiter-Saturn distances, and a massive outer planetesimal disk. We then calculate dust production rates and debris disk SEDs assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. We predict a strong correlation between the presence of terrestrial planets and debris disks, mediated by the giant planets. Strong giant planet instabilities destroy all rocky material - including fully-formed terrestrial planets if the instabilities occur late - along with the icy planetesimals. Stable or weakly unstable systems allow terrestrial planets to accrete and significant dust to be produced in their outer regions. Stars older than ~100 Myr with bright cold dust emission (at ~70 microns) signpost the dynamically calm environments conducive to efficient terrestrial accretion. We predict that while the typical eccentricities of terrestrial planets are small, there should exist a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in eccentricity and inclination. By scaling to the observed semimajor axis distribution of giant exoplanets, we estimate that terrestrial exoplanets in the same systems should be a few times more abundant at 0.5 AU than giant or terrestrial exoplanets at 1 AU. Finally, we discuss the Solar System, which appears to be unusual in combining a rich terrestrial planet system with a low dust content.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا